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Exercise Sheet 3

Due date: 14:00, Nov 8th, by the end of the lecture.
Late submissions will be mailed in as votes for Trump.

You should try to solve all of the exercises below, and submit two solutions to be graded —
each problem is worth 10 points. We encourage you to submit in pairs, but please remember
to indicate the author of each individual solution.

Exercise 1 Just as we extended the problem of finding a spanning tree to weighted
graphs, so too can we ask for maximum weight matchings in weighted graphs. In this
setting we are given a complete graph Kn,n, with vertex classes X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn}, together with nonnegative edge weights ωi,j = ω({xi, yj}) ≥ 0 for all
1 ≤ i, j ≤ n. The weight of a matching M is given by ω(M) =

∑
e∈M ω(e), and the problem

is now to find a perfect matching of maximum weight.

(a) Show that the problem of finding a maximum matching in a bipartite graph can be
reduced to finding a maximum-weight matching in a complete bipartite graph.

We can also have price functions for the vertices, with u(xi) = ui and v(yj) = vj. A pair of
price functions (u, v) is called a weighted cover if ui + vj ≥ ωi,j for all 1 ≤ i, j ≤ n. The cost
of the cover (u, v) is given by c(u, v) =

∑n
i=1 ui +

∑n
j=1 vj.

(b) Prove that for every perfect matching M and every weighted cover (u, v), we have
ω(M) ≤ c(u, v). Moreover, we have equality if and only if there is some permutation
π ∈ Sn such that M = {{xi, yπ(i)} : i ∈ [n]} and ui + vπ(i) = ωi,π(i) for all i.

Exercise 2 In this exercise, you will see that both Hall’s and Tutte’s theorems can be
extended to give certificates for maximum matchings and not just perfect matchings.

(a) Prove that for every bipartite graph G = (X ∪ Y,E), we have

α′(G) = min
S⊆X

(|X| − |S|+ |N(S)|) .

(b) Prove that for every graph G = (V,E), we have

2α′(G) = min
S⊆V

(|V |+ |S| − o(G \ S)) .

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S03.html.]
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Exercise 3 Give an inductive proof of Hall’s theorem — that a bipartite graph G =
(X ∪ Y,E) has a matching saturating X if and only if for every subset S ⊆ X we have
|N(S)| ≥ |S| — that makes no mention of augmenting paths.

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S03.html.]

Exercise 4 A graph G = (V,E) is called cubic if every vertex has degree three, and
bridgeless if we have to remove at least two edges to disconnect G.

(a) Prove that every cubic bridgeless graph has a perfect matching.

(b) Give an example of a cubic graph that does not have a perfect matching.

Exercise 5 Given a graph G = (V,E), one could try to apply the greedy algorithm to find
a maximum matching of G. Order the edges E = {e1, e2, . . . , em} in some (arbitrary) way,
and start with M0 = ∅. At time t, for every 1 ≤ t ≤ m, if Mt−1 ∪ {et} is a matching, set
Mt = Mt−1 ∪ {et−1}, and otherwise set Mt = Mt−1. Return the final matching Mm.

Prove that this gives a 1
2
-approximation algorithm for the maximum matching problem,

and give an example to show that the 1
2

approximation ratio is tight for this algorithm.

Exercise 6 A matroid is a pair (X,B) of a finite ground set X and a collection B of subsets
of X called bases that satisfy the following axioms:

(A1) There is at least one basis, i.e. B 6= ∅.

(A2) The basis exchange property: If A,B ∈ B with A 6= B, then for every a ∈ A \B there
is some b ∈ B \ A such that A \ {a} ∪ {b} ∈ B is another basis.

A set A is called independent if it is a subset of some basis; that is, if there is B ∈ B with
A ⊆ B. You are already familiar with some fundamental matroids: for example, the set of
bases of a finite vector space, or the set of spanning trees in a connected graph. Start by
showing the following is true in this more general setting.

(a) Show that all bases in a matroid must have the same cardinality.

If we assign nonnegative weights w : X → R≥0 to elements in the ground set, we can then
ask for the minimum weight basis; that is, for B ∈ B minimising

∑
x∈B w(x).

The greedy algorithm is as follows: let X be ordered by weight, so X = {x1, x2, . . . , xn}
with w(x1) ≤ w(x2) ≤ . . . ≤ w(xn). Start with S0 = ∅. At time t, for 1 ≤ t ≤ n, let
T = St−1 ∪ {xt}. If T is independent, set St = T , and otherwise set St = St−1. The output
of the algorithm is the final set Sn.

(b) Prove that the greedy algorithm produces a basis of minimum weight.

Bonus (10 pts) Prove that the converse of (b) is also true: if F is a collection of subsets
of a finite ground set X such that for any nonnegative weight function w : X → R≥0, the
greedy algorithm always produces a set F ∈ F of minimal weight, then (X,F) is a matroid.
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