Exercise Sheet 6

Due date: 14:00, Nov 29th, by the end of the lecture. Late submissions will be stuffed into a turkey.

You should try to solve all of the exercises below, and submit two solutions to be graded — each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each individual solution.

Exercise 1 A clique decomposition of a multigraph G is a collection \mathcal{K} of cliques¹ in G such that every edge of G is contained in at least one clique in \mathcal{K} .

- (a) Prove that G is the line graph of some multigraph H if and only if G has a clique decomposition \mathcal{K} with every vertex appearing in exactly two cliques in \mathcal{K} . Show further that H may be taken to be a simple graph if and only if every pair of vertices in G appear together in at most one clique of \mathcal{K} .
- (b) For the three graphs G_i below, provide, if possible, a multigraph H_i for which we have $G_i = L(H_i)$. If possible, make H_i a simple graph. Whenever these tasks are impossible, explain why.

Exercise 2 Use Petersen's Theorem on 2-factors in regular graphs of even degree to prove that every multigraph G satisfies $\chi'(G) \leq 3 \lceil \Delta(G)/2 \rceil$, and show this bound can be tight for even values of $\Delta(G)$.

Exercise 3 Let G be a graph with maximum degree $\Delta = \Delta(G)$.

- (a) Show that if the vertices in G of degree Δ induce a forest, then G is Δ -edge-colourable.
- (b) Show that for every matching M in G, there is a $(\Delta + 1)$ -edge-colouring of G in which all edges of M receive the same colour.

¹A clique is a complete subgraph, and we allow cliques with just a single vertex.

Exercise 4 Let G be a bipartite graph. An *orientation* of G is a directed graph \vec{D} where every edge $\{u, v\}$ of G is assigned *one* of the orientations (u, v) or (v, u) in \vec{D} .

- (a) Let \vec{D} be an orientation of G where every vertex has an out-neighbour. Show that \vec{D} has a kernel.
- (b) Show that every orientation \vec{D} of G has a kernel.
- (c) Deduce that every bipartite digraph is kernel-perfect.

Bonus (5 pts) Show that every bipartite graph with maximum degree Δ is $\left(\left\lceil \frac{\Delta}{2} \right\rceil + 1\right)$ -list-colourable.

Exercise 5 Your mission, should you choose to accept it, is to extend the proof of Galvin's theorem from $K_{n,n}$ to general bipartite graphs.

- (a) Considering the complete bipartite graph $G = K_{n,n}$ with vertices $X \cup Y$, show that the edge-colouring $\phi(\{x_i, y_j\}) = i + j \pmod{n}$ gives a proper *n*-edge-colouring of *G*.
- (b) Let G now be an arbitrary bipartite graph with edge-chromatic number $\chi'(G) = n$. Use an n-colouring of E(G) to find an orientation \vec{D} of the line graph L(G) such that:
 - (i) The maximum out-degree is at most n-1.
 - (ii) Given an edge $\{x, y\}$ of G, the digraphs induced on the sets $S_x = \{\{x, y'\} : y' \in N(x)\} \subset V(L(G))$ and $S_y = \{\{x', y\} : x' \in N(y)\} \subset V(L(G))$ are transitive.
- (c) Show that \vec{D} is kernel-perfect, and deduce that $\chi'_{\ell}(G) = n$.

Exercise 6 We know that distinguishing between Class 1 ($\chi'(G) = \Delta(G)$) and Class 2 ($\chi'(G) = \Delta(G) + 1$) graphs is generally hard to do. In this exercise you will provide a (very) partial classification.

(a) Show that if G is a regular graph with a cut-vertex, then G is a Class 2 graph.

For the following exercises, we shall study the Cartesian product of graphs, $G\Box H$. This product is defined on the vertices $V(G\Box H) = V(G) \times V(H)$, with edges $(g_1, h_1) \sim (g_2, h_2)$ if and only if either $g_1 = g_2$ and $h_1 \sim_H h_2$, or $g_1 \sim_G g_2$ and $h_1 = h_2$.²

- (b) Prove that for any graph H, $K_2 \Box H$ is a Class 1 graph.
- (c) Extend part (b) by showing that whenever G is a Class 1 graph, $G \Box H$ is as well.

²This product is denoted with the symbol \Box to denote the fact that $K_2 \Box K_2 = C_4$.