Wi 201617
Tibor Szabd

Algorithmic Combinatorics
Shagnik Das

Exercise Sheet 8

Due date: 14:00, Dec 13th, by the end of the lecture.
Late submissions will be turned into papier-maché and moulded into casts.

You should try to solve all of the exercises below, and submit two solutions to be graded —
each problem is worth 10 points. We encourage you to submit in pairs, but please remember
to indicate the author of each individual solution.

Exercise 1 The following table describes a network.

Start — End | Capacity (€, mil) | Start — End | Capacity (€, mil)
Mad — Ams 50 Mad — Dub 140
Ams — Jer 40 Ams — Lux 40
Ams — Ber 50 Jer — Lux 30
Dub — Ams 130 Dub — Zir 20
Dub — Cay 50 Ber — Dub 60
Ber — Zir 60 Lux — Ber 40
Lux — Zur 30 Lux — BVI 60
Cay — Zir 30 Zir — BVI 120

Find a flow of maximum possible value from Madrid (‘Mad’) to the British Virgin Islands
(‘BVTI’), and give a short proof that one cannot do better.

Exercise 2 Consider the network in the figure below. The source and the sink are marked
with S and T, and the capacities of all but one edge are indicated. The remaining edge has

capacity 1(v/5 —1).
% Q\\
S 99 1 N 99 T
X \1 99

O

(a) Find (with proof) the value of the maximum flow in the network.

(b) Describe a choice of augmenting paths in the Ford-Fulkerson algorithm for which the
algorithm never finishes and the flow value converges to 2 + v/5.

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S08.html. |

http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S08.html

Exercise 3 Let G be a graph, and let z,y € V(G) be two vertices. By constructing an
appropriate network (D, s,t, ¢), use the Ford-Fulkerson Theorem to prove r'(z,y) = XN (x,y),
without referring to any other versions of Menger’s Theorem.

Exercise 4 In lecture we showed how one can prove the local, vertex version of Menger’s
Theorem; that is, given a graph G and non-adjacent vertices =,y € V(QG), k(z,y) = Az, y).
We constructed a directed graph D with vertices V(D) = {v,v™ : v € V(G)} and edges
E(D) = {(u*,v7), (v",u") s uv € B(G)YU{(v~,v") : v € V(G)}. We then assigned edge
capacities by setting

.)
oo otherwise

(@) = {1 if & = (v=,0%),0 € V(G)

and considered flows in the network (5, xt oy c).
To complete the proof, prove the following claim: the minimum capacity of an ™, y~ cut
in D is equal to the minimum size of an x, y-separating set in G.

Exercise 5 In this exercise you have the opportunity to perform the calculations needed

in the inductive step in our proof of Baranyai’s Theorem. Recall that for 1 <7 < n, we

sought a collection of M = (Zj) m-partitions A; of [(], where m = 7, such that every set

F C [{] appeared (with multiplicity) in exactly (,{J TF\) of the m-partitions.
Given such a collection of m-partitions for £ < n—1, we built a network (5, s,t,c), where
V(D) ={s,t} U{A;:i € [M]} U{F: F C[{]} and

B(D)={(s,4) :i € [MYU{(A;,F):i € [M],F e A}U{(Ft):FCl])

The capacities were given by

1 €= (8, Al)
n—(¢+1 —
c(€) = (k—(|(F—|:-i)) e= (K1)
o0 otherwise
(a) Prove that the flow f defined by
1 €= (S, Az)
f@=q5% @=(AF)
n—(¢+1 —
(k:—(|(FT+i)) €= (Ft)

is indeed a feasible flow.

(b) We used an integral maximum flow to find a unique set F; € A; for each ¢ € [M], and
then formed m-partitions A} of [(+ 1] by adding the element ¢+ 1 to the set F} in each
A;. Show that this collection of m-partitions of [+ 1] satisfies the required conditions.

Exercise 6 Suppose n > 2. Baranyai’s Theorem guarantees ([3;]) can be partitioned into
perfect matchings without explicitly describing these matchings. In this exercise you will
give such an explicit description in the case when p = 3n — 1 is a prime number.

()

(b)

Consider the field F,, and denote by F, the set of invertible elements, namely F, =
{1,2,...,p — 1}. Define the map 7 : F; — F, by 7(z) = —(1 4 2)z~". Show that 7 is
injective and 73(x) = x for any x # p — 1.

Add a new element u to F,, and extend 7 to {u,0} injectively so that m3(z) = x for
all x € F, U {u}. Show that this gives some perfect matching M, in ([3;‘]).

By considering affine transformations x — ax + b, find another (3"2_ 1) — 1 perfect

matchings in <[3§”) .

Show that these matchings partition ([3;]) into perfect matchings.

