Exercise Sheet 8

Due date: 14:00, Dec 13th, by the end of the lecture. Late submissions will be turned into papier-mâché and moulded into casts.

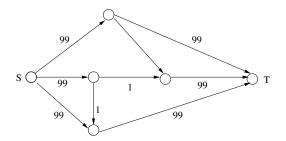
You should try to solve all of the exercises below, and submit two solutions to be graded — each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each individual solution.

Start	\rightarrow	End	Capacity (€, mil)	Start	\rightarrow	End	Capacity (€, mil)
Mad	\rightarrow	Ams	50	Mad	\rightarrow	Dub	140
Ams	\rightarrow	Jer		Ams	\rightarrow	Lux	40
Ams	\rightarrow	Ber	50	Jer	\rightarrow	Lux	30
Dub	\rightarrow	Ams	130	Dub	\rightarrow	Zür	20
Dub	\rightarrow	Cay	50	Ber	\rightarrow	Dub	60
Ber	\rightarrow	Zür	60	Lux	\rightarrow	Ber	40
Lux	\rightarrow	Zür	30	Lux	\rightarrow	BVI	60
Cay	\rightarrow	Zür	30	Zür	\rightarrow	BVI	120

Exercise 1 The following table describes a network.

Find a flow of maximum possible value from Madrid ('Mad') to the British Virgin Islands ('BVI'), and give a short proof that one cannot do better.

Exercise 2 Consider the network in the figure below. The source and the sink are marked with S and T, and the capacities of all but one edge are indicated. The remaining edge has capacity $\frac{1}{2}(\sqrt{5}-1)$.



- (a) Find (with proof) the value of the maximum flow in the network.
- (b) Describe a choice of augmenting paths in the Ford-Fulkerson algorithm for which the algorithm never finishes and the flow value converges to $2 + \sqrt{5}$.

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S08.html.]

Exercise 3 Let G be a graph, and let $x, y \in V(G)$ be two vertices. By constructing an appropriate network (\vec{D}, s, t, c) , use the Ford-Fulkerson Theorem to prove $\kappa'(x, y) = \lambda'(x, y)$, without referring to any other versions of Menger's Theorem.

Exercise 4 In lecture we showed how one can prove the local, vertex version of Menger's Theorem; that is, given a graph G and non-adjacent vertices $x, y \in V(G)$, $\kappa(x, y) = \lambda(x, y)$. We constructed a directed graph \vec{D} with vertices $V(\vec{D}) = \{v^+, v^- : v \in V(G)\}$ and edges $\vec{E}(\vec{D}) = \{(u^+, v^-), (v^+, u^-) : uv \in E(G)\} \cup \{(v^-, v^+) : v \in V(G)\}$. We then assigned edge capacities by setting

$$c(\vec{e}) = \begin{cases} 1 & \text{if } \vec{e} = (v^-, v^+), v \in V(G) \\ \infty & \text{otherwise} \end{cases}$$

and considered flows in the network (\vec{D}, x^+, y^-, c) .

To complete the proof, prove the following claim: the minimum capacity of an x^+, y^- cut in \vec{D} is equal to the minimum size of an x, y-separating set in G.

Exercise 5 In this exercise you have the opportunity to perform the calculations needed in the inductive step in our proof of Baranyai's Theorem. Recall that for $1 \leq \ell \leq n$, we sought a collection of $M = \binom{n-1}{k-1}$ *m*-partitions \mathcal{A}_i of $[\ell]$, where $m = \frac{n}{k}$, such that every set $F \subseteq [\ell]$ appeared (with multiplicity) in exactly $\binom{n-\ell}{k-|F|}$ of the *m*-partitions.

Given such a collection of *m*-partitions for $\ell \leq n-1$, we built a network (D, s, t, c), where $V(\vec{D}) = \{s, t\} \cup \{\mathcal{A}_i : i \in [M]\} \cup \{F : F \subseteq [\ell]\}$ and

$$\vec{E}(\vec{D}) = \{(s, \mathcal{A}_i) : i \in [M]\} \cup \{(\mathcal{A}_i, F) : i \in [M], F \in \mathcal{A}_i\} \cup \{(F, t) : F \subseteq [\ell]\}$$

The capacities were given by

$$c\left(\vec{e}\right) = \begin{cases} 1 & \vec{e} = (s, \mathcal{A}_i) \\ \binom{n-(\ell+1)}{k-(|F|+1)} & \vec{e} = (F, t) \\ \infty & otherwise \end{cases}$$

(a) Prove that the flow f defined by

$$f(\vec{e}) = \begin{cases} 1 & \vec{e} = (s, \mathcal{A}_i) \\ \frac{k - |F|}{n - \ell} & \vec{e} = (\mathcal{A}_i, F) \\ \binom{n - (\ell + 1)}{k - (|F| + 1)} & \vec{e} = (F, t) \end{cases}$$

is indeed a feasible flow.

(b) We used an integral maximum flow to find a unique set $F_i \in \mathcal{A}_i$ for each $i \in [M]$, and then formed *m*-partitions \mathcal{A}'_i of $[\ell+1]$ by adding the element $\ell+1$ to the set F_i in each \mathcal{A}_i . Show that this collection of *m*-partitions of $[\ell+1]$ satisfies the required conditions. **Exercise 6** Suppose $n \ge 2$. Baranyai's Theorem guarantees $\binom{[3n]}{3}$ can be partitioned into perfect matchings without explicitly describing these matchings. In this exercise you will give such an explicit description in the case when p = 3n - 1 is a prime number.

- (a) Consider the field \mathbb{F}_p , and denote by \mathbb{F}_p^* the set of invertible elements, namely $\mathbb{F}_p^* = \{1, 2, \ldots, p-1\}$. Define the map $\pi : \mathbb{F}_p^* \to \mathbb{F}_p$ by $\pi(x) = -(1+x)x^{-1}$. Show that π is injective and $\pi^3(x) = x$ for any $x \neq p-1$.
- (b) Add a new element u to \mathbb{F}_p , and extend π to $\{u, 0\}$ injectively so that $\pi^3(x) = x$ for all $x \in \mathbb{F}_p \cup \{u\}$. Show that this gives some perfect matching M_0 in $\binom{[3n]}{3}$.
- (c) By considering affine transformations $x \mapsto ax + b$, find another $\binom{3n-1}{2} 1$ perfect matchings in $\binom{[3n]}{3}$.
- (d) Show that these matchings partition $\binom{[3n]}{3}$ into perfect matchings.