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Let F = {Ay,...,A,} be an arbitrary hypergraph on the vertex set V. For
a hyperedge C' € F denote by I'£(C') = {D € F : C N D # (} the neighborhood
of C. Note that C' € I't(C). Consider the following algorithm

Algorithm F-LLL-painter(G,c)

Input sub-hypergraph G C F, 2-coloring ¢ : V' — {B, R}
0 Set ¢ :=c¢

1 while G is not properly colored by ¢ do

2 select a monochromatic set A; € G with smallest index

3 change ¢ by recoloring the vertices of A; independently and u.a.r.
4 F-LLL-painter(I'L(4;), )

5 return ¢

Lemma 1 [f F-LLL-painter (G, c) ever returns, then G is properly colored, fur-
thermore, every set D € F that intersects a set C' € F recolored by the algorithm
will itself be properly colored.

Proof: Let D € F be such a hyperedge. Let C' € F be the hyperedge which
was recolored last by the algorithm among those with C' N D # (). Then, since
D is a member of I'5(C), F-LLL-painter(I'%(C), ) could not return without
properly coloring D. (In fact, immediately after the recoloring of C', D must be
properly colored.) After that the vertices of D are not recolored anymore, so D
stays properly colored. []

Corollary 2 Fach hyperedge of G is recolored at most once on the top-level of
F-LLL-painter (G, c).

The following infinite rooted ordered tree 7 will be a useful environment
in picturing the progress of the algorithm. (By ordered tree we mean that the
children of each vertex have an ordering on them.) The root r of 7 has |G|
children each is labeled by a different hyperedge of G. Then recursively, each
further vertex, whose label is C' € F, has children to [['=(C)| vertices labeled by



the hyperedges in I'5(C'). (Note that the same hyperedge C will label infinitely
many vertices of the tree. The root has no label.)

Because of the corollary, any particular running of the algorithm can be imag-
ined as a subtree of the ordered tree T containing the root r.

Theorem 3 Let F = {A,..., A} C (‘;) be a k-uniform hypergraph such that
ITE(C)| < 24 for every C € F. Let ¢ : V. — {R,B} chosen u.a.r. Then
F-LLL-painter (F,c) returns a proper coloring in O(mlogm) expected time.

Proof. We will encode what the algorithm does into a bitstring. To do that we
traverse the edges and vertices of the corresponding ordered subtree of 7 starting
at r. We traverse each edge twice, once downwards and once upwards. Each time
we move down on an edge, we append a 1 to our bitstring. Each time we move
up, we record a 0. Each time we first arrive at a vertex, we append the index
of its label in binary and use a further bit to express the monochromatic color
color(C') of the label C, say write 0 for blue and 1 for red. (Remember, each
non-root vertex is labeled by a hyperedge and at the moment when we first arrive
to a vertex its label is monochromatic according to ¢’).

For a top-level vertex we need to use [logm] bits to encode its label, but
on lower levels at most k — 4 bits are enough, as we know that the particular
hyperedge is a member of some I'%(C) (and we know which one!).

To do this encoding formally, for some C' € G let us define bincode(C, G) be
the number (written in binary) of hyperedges in G whose index is smaller than
the index of C. Then here is the algorithm with the formal encoding written into
a logh:

Algorithm F-LLL-painter(G,c)
Input sub-hypergraph G C F, 2-coloring ¢ : V' — {B, R}

0Set d:=c
1 while G is not properly colored by ¢ do

2 select a monochromatic set A; € G with smallest index

3 change ¢ by recoloring the vertices of A; independently and u.a.r.

4 append to the log: a bit 1, the bincode(C, G) and the bit color(C)
5 run F-LLL-painter(I'5(A;), ) and set ¢ to be its output

6 append a bit 0 to the log

7 return ¢

Let us now count the bits. By the Corollary, the number of top-level recolor-
ings is at most m, each requiring [logm] bits for the label of the set. Each of the
lower level recolorings require k — 4 bits for the label of the set. For each recolor-
ing we must also add one bit expressing the color of the set before the recoloring

!There are two completely different logs in this note not to be confused with each other ...



and account for the bit “1” we write when we first enter the corresponding vertex
of 7 and the bit “0” we write when we leave the vertex towards its parent. So in
case of ¢ lower level recolorings, we noted at most [(t) = m([logm]+3)+t(k—1)
bits.

Note that the algorithm requires a source of random bits for the coloring:
|V| bits for the initial random coloring, and then an additional k bits for every
subsequent recoloring. Now comes the intuitive contradiction if the algorithm
was running too long: Each vertex of 7 which is traversed by the algorithm at
some time corresponds to a hyperedge that is monochromatic at the moment the
algorithm gets there the first time. This enables us to recover those k bits of
the random source which the algorithm uses for the vertices of that hyperedge
at that particular time. Note that these k vertices are immediately recolored by
the algorithm using the random source, so when further vertices of 7 are visited
by the algorithm, the k£ bits recovered there will each time be new. These bits
might be not consecutive within the infinite random bitstring, but their location
is exactly determined by what we have noted in our log so far.

In case of a top-level recoloring this is not so exciting: we used [logm| + 3
bits in the log, likely much more than the recovered k random bits. For lower
level recolorings, however, we use only & — 1 bits to recover k fully random bits.
In other words we gain 1 bit of information each time this happens. This cannot
go on forever, otherwise information theory collapses! This is the reason the
algorithm MUST finish in a finite time with high probability.

If there are ¢ lower level recolorings we recover at least tk random bits. We
must then have that m([logm] + 3) + t(k — 1) > tk, i.e., m([logm| + 3) > ¢, is
pretty likely. This implies that the number of lower level recolorings is bounded
by a function of m.

Let us now see formally all the above. Let T' be the random variable counting
the number of lower level recolorings of the algorithm. We will prove that Pr(T =
o0) =0 and E(T|T < oc0) = O(mlogm).

Let a € {R, B}* be an infinite bitstring (from the random source) which
made the algorithm use at least ¢ lower level recolorings. Let s = log(a) be the
the bitstring we produce in our log up to the tth lower level recoloring. Then
s consists of at most [(t) bits. Based on s we can reproduce tk very specific(!)
places in «. In fact any infinite random bitstring o/ which makes us write the
same initial segment s into our log must have the same bits at these specific kt
coordinates. Hence Pr(s is the initial segment of our log) < 1/2* for any s € S,
where S; is the set of bitstrings that arise as initial segments of the log up to the
tth lower level recoloring for some infinite bitstring. Clearly S; C Ui(:tl{(), 1}
Hence
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Pr(T'>t) = Z Pr(s is the initial segment of our log) < Z oWt
SES SES

< 2l(t)+1*kt S 2m([10gm‘\+3)+17t N O



as t — 00, so Pr(T < oo) = 1. Then for the expected number of lower level
recolorings we have

E(T|T <) = Y Pr(T >tT <o) < m([logm] +3) + > gm([logm]+3)+1-¢
t=1 t=m([logm]+3)+1

= m([logm] + 3) + 2.

Since the number of top level recolorings is at most m for every running of
the algorithm and each recoloring requires a function of £ many steps, we have
shown that the running time is O(mlogm).

!

Remark 1. With a further observation one can also show that the number
of recolorings is in fact O(|V'|logm). (HW)

2. In line 2 of the algorithm we could have selected an arbitrary monochromatic
hyperedge and practically the same analysis would work.

3. The bit 0 which we write in our log after the algorithm is back to the root
vertex r is superfluous: we know that the next edge is downwards.



