
Recall: Connectivity

A separating set (or vertex cut) of a graph G is a set
S ⊆ V (G) such that G − S has more than one com-
ponent. For G 6= Kn, the connectivity of G is

κ(G) := min{|S| : S is a vertex cut}.

By definition, κ(Kn) := n− 1.

A graph G is k-connected if v(G) ≥ k + 1 and there
is no vertex cut of size k − 1. (i.e. κ(G) ≥ k)

Examples. κ(Kn,m) = min{n,m}
κ(Qd) = d

Decision problem: “Is G k-connected?” is in co-NP.
Is it also in NP?
How about P?

Remark. 1-connectivity is in P : BreadthFirstSearch
(BFS) and DepthFirstSearch (DFS) find a span-
ning tree of G (if it exists) in O(v(G) + e(G)) time
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Recall: Edge-connectivity

An edge cut of a multigraph G is an edge-set of the
form [S, S̄], with ∅ 6= S 6= V (G) and S̄ = V (G) \ S.

For S, T ⊆ V (G), [S, T ] := {xy ∈ E(G) : x ∈ S, y ∈ T}.

The edge-connectivity of G is

κ′(G) := min{ |[S, S̄]| : [S, S̄] is an edge cut}.

A graph G is k-edge-connected if there is no edge cut
of size k − 1 (i.e. κ′(G) ≥ k).

Theorem. (Whitney, 1932) IfG is a simple graph, then
κ(G)≤κ′(G)≤δ(G).

Homework. Example of a graph G with κ(G) = k,

κ′(G) = l, δ(G) = m, for any 0 < k ≤ l ≤ m.

HW G is 3-regular⇒ κ(G) = κ′(G).
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Recall: Characterization of 2-connectivity

Theorem. (Whitney,1932) Let G be a graph, n(G) ≥
3. Then G is 2-connected iff for every u, v ∈ V (G)

there exist two internally disjoint u, v-paths in G.

Theorem. Let G be a graph with n(G) ≥ 3. Then the
following four statements are equivalent.

(i) G is 2-connected

(ii) For all x, y ∈ V (G), there are two internally dis-
joint x, y-path.

(iii) For all x, y ∈ V (G), there is a cycle through x

and y.
(iv) δ(G) ≥ 1, and every pair of edges of G lies on a

common cycle.

Expansion Lemma. LetG′ be a supergraph of a k-connected
graph G obtained by adding one vertex to V (G) with at least
k neighbors.
Then G′ is k-connected as well.

Corollary 2-connectivity is in NP∩co-NP.
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Menger’s Theorem

Given x, y ∈ V (G), a set S ⊆ V (G) \ {x, y} is an
x, y-cut if G− S has no x, y-path.

A set P of paths is called pairwise internally disjoint
(p.i.d.) if for any two path P1, P2 ∈ P, P1 and P2 have
no common internal vertices.

Define

κ(x, y) := min{|S| : S is an x, y-cut,} and
λ(x, y) := max{|P| : P is a set of p.i.d. x, y-paths}

Local Vertex-Menger Theorem (Menger, 1927) Let
x, y ∈ V (G), such that xy 6∈ E(G). Then

κ(x, y) =λ(x, y).

Corollary (Global Vertex-Menger Theorem) A graph
G is k-connected iff for any two vertices x, y ∈ V (G)
there exist k p.i.d. x, y-paths.

Proof: Lemma. For every e ∈ E(G), κ(G− e) ≥ κ(G)− 1.

Corollary “k-connectivity” is in NP∩co-NP
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Edge-Menger

Given x, y ∈ V (G), a set F ⊆ E(G) is an x, y-
disconnecting set if G− F has no x, y-path. Define

κ′(x, y) := min{|F | : F is an x, y-disconnecting set,}
λ′(x, y) := max{|P| : P is a set of p.e.d.∗ x, y-paths}
∗ p.e.d. means pairwise edge-disjoint

Local Edge-Menger Theorem For all x, y ∈ V (G),

κ′(x, y) =λ′(x, y).

Proof. Apply Menger’s Theorem for the line
graph of G′, where V (G′) = V (G) ∪ {s, t} and
E(G′) = E(G) ∪ {sx, yt}.

Corollary (Global Edge-Menger Theorem) Multigraph
G is k-edge-connected iff there is a set of k p.e.d.x, y-
paths for any two vertices x and y.

Corollary “k-edge-connectivity” is in NP∩co-NP
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Network flows

Network (D, s, t, c); D is a directed multigraph,
s ∈ V (D) is the source, t ∈ V (D) is the sink,
c : E(D)→ IR+ ∪ {0} is the capacity.

Flow f is a function, f : E(D)→ IR

f+(v) :=
∑
v→u

f(vu)

f−(v) :=
∑
u→v

f(uv).

Flow f is feasible if

(i) f+(v) = f−(v) for every v 6= s, t (conservation
constraints), and

(ii) 0 ≤ f(e) ≤ c(e) for every e ∈ E(D) (capacity
constraints).

value of flow, val(f) := f−(t)− f+(t).

maximum flow: feasible flow with maximum value
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Example

0-flow
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f -augmenting path

G: underlying undirected graph of network D

s, t-path s=v0, e1, v1, e2 . . . vk−1, ek, vk= t in G
is an f -augmenting path, if for every i

(i) f(ei) < c(ei) if ei is a “forward edge”

(ii) f(ei) > 0 if ei is a “backward edge”

Tolerance of the path P is min{ε(e) : e ∈ E(P )},
where ε(e) = c(e)− f(e) if e is forward, and

ε(e) = f(e) if e is backward.

Lemma. Let f be feasible and P be an f -augmenting
path with tolerance z. Define
f ′(e) := f(e) + z if e is forward,
f ′(e) := f(e)− z if e is backward.
f ′(e) := f(e) if e /∈ E(P ),
Then f ′ is feasible with val(f ′) = val(f) + z.
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Characterization of maximum flows

Characterization Lemma. Feasible flow f is of maxi-
mum value iff there is NO f -augmenting path.

Proof.⇒ Easy.
⇐ Suppose f has no augmenting path.

S := {v ∈ V (D) : ∃ f -augmenting path∗ from s to v}.

Then t /∈ S and∑
e∈[S,S̄]

c(e) =
∑

e∈[S,S̄]

f(e)−
∑

e∈[S̄,S]

f(e).

We feel, that

(1) val(f∗) ≤
∑
e∈[S,S̄] c(e) for any feasible flow f∗,

and

(2) val(f) =
∑
e∈[Q,Q̄] f(e)−

∑
e∈[Q̄,Q] f(e), for any

Q ⊆ V (D), s ∈ Q, t /∈ Q.

Right? Let’s see
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The value of feasible flow Proof of (2)

Lemma If f is any feasible flow, s ∈ Q, t /∈ Q, then∑
e∈[Q,Q̄]

f(e)−
∑

e∈[Q̄,Q]

f(e) = val(f).

Proof. By induction on |Q̄|. If |Q̄| = 1 then Q̄ = {t}
and by definition f−(t)− f+(t) = val(f).

Let |Q̄| ≥ 2 and let x ∈ Q̄, x 6= t.
Define R = Q ∪ {x}. Since |R̄| < |Q̄|, by induction

val(f) =
∑

e∈[R,R̄]

f(e)−
∑

e∈[R̄,R]

f(e)

=
∑

e∈[Q,Q̄]

f(e)−
∑

e∈[Q̄,Q]

f(e) +
∑
u∈Q

f(xu)

−
∑
u∈Q

f(ux) +
∑
v∈R̄

f(xv)−
∑
v∈R̄

f(vx)

=
∑

e∈[Q,Q̄]

f(e)−
∑

e∈[Q̄,Q]

f(e) + f+(x)− f−(x)

Remark. val(f) = f+(s)− f−(s).
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Source/sink cuts Proof of (1)

[S, S̄] := {(u, v) ∈ E(D) : u ∈ S, v ∈ S̄} is a
source/sink cut if s ∈ S and t ∈ S̄

capacity of cut: cap(S, S̄) :=
∑
e∈[S,S̄] c(e).

Lemma. (Weak duality) If f is a feasible flow and [S, S̄]

is a source/sink cut, then

val(f) ≤ cap(S, S̄).

Proof.

cap(S, S̄) =
∑

e∈[S,S̄]

c(e)

≥
∑

e∈[S,S̄]

f(e)

≥
∑

e∈[S,S̄]

f(e)−
∑

e∈[S̄,S]

f(e)

= val(f).
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Max flow-Min cut Theorem

Max Flow-Min Cut Theorem (Ford-Fulkerson, 1956)
Let f be a feasible flow of maximum value and [S, S̄]

be a source/sink cut of minimum capacity. Then

val(f) = cap(S, S̄).

Proof. (Corollary to proof of Characterization Lemma)
Define

S := {v ∈ V (D) : ∃ f -augmenting path∗ from s to v}.

Since f is maximum, f has no augmenting path. Then
t ∈ S̄ and of course s ∈ S.

cap(S, S̄) =
∑

e∈[S,S̄]

c(e)

=
∑

e∈[S,S̄]

f(e)−
∑

e∈[S̄,S]

f(e)

= val(f).
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Edge-Menger Theorem

Recall:

κ′(x, y) := min{|F | : F is an x, y-disconnecting set,}
λ′(x, y) := max{|P| : P is a set of p.e.d.∗ x, y-paths}
∗ p.e.d. means pairwise edge-disjoint

Local-Edge-Menger Theorem For all x, y ∈ V (G),

κ′(x, y) = λ′(x, y).

Proof. Build network (D, x, y, c) where V (D) = V (G),
E(D) = {(u, v), (v, u) : uv ∈ E(G)} and
c(e) = 1 for all e ∈ E(D).
• 1-to-1 correspondence between x, y-disconnecting

sets and sorce/sink cuts. Hence
κ′(x, y) = min cap(S, S̄).
• each set of p.e.d. path determines a feasible flow.

So λ′(x, y) ≤ max valf .

But what if there is some clever way to direct different-
ly a flow with larger overall value?? This flow then
must have fractional values on some of the edges.
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Ford-Fulkerson Algorithm

Initialization f ≡ 0
WHILE there exists an augmenting path P

DO augment flow f along P
return f

Corollary. (Integrality Theorem) If all capacities of a
network are integers, then there is a maximum flow
assigning integral flow to each edge.
Furthermore, some maximum flow can be partitioned
into flows of unit value along path from source to sink.

Running times:

• Basic (careless) Ford-Fulkerson: might not even
terminate, flow value might not converge to maxi-
mum;
when capacities are integers, it terminates in time
O(m |f∗|), where f∗ is a maximum flow.
• Edmonds-Karp: chooses a shortest augmenting

path; runs in O(nm2)
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Example

The Max-flow Min-cut Theorem is true for real capaci-
ties as well,
BUT our algorithm might fail to find a maximum flow!!!

1

1
99 99

99 99

99 99

√
5−1
2

Example of Zwick (1995)

Remark. The max flow is 199. There is such an unfortunate

choice of a sequence of augmenting paths, by which the flow

value never grows above 2 +
√

5.
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Menger’s Theorem

Recall:

κ(x, y) := min{|S| : S is an x, y-cut,} and

λ(x, y) := max{|P| : P is a set of p.i.d. x, y-paths}

Local-Vertex-Menger Theorem Let x, y ∈ V (G), such
that xy 6∈ E(G). Then

κ(x, y) = λ(x, y).

Proof. We apply the Integrality Theorem for the auxili-
ary network (D, x+, y−, c).

V (D) := {v−, v+ : v ∈ V (G)}
E(D) := {(u+v−) : uv ∈ E(G)}

∪{(v−v+) : v ∈ V (G)}

c(u+v−) =∞∗ and c(v−v+) = 1.

∗or rather a large enough integer, say |V (D)|.
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Application: Baranyai’s Theorem

χ′(Kn) = n− 1 is saying: E(Kn) can be decompo-
sed into pairwise disjoint perfect matchings.

k-uniform hypergraphs? E(K(k)
n ) =

(
[n]
k

)
Let k|n. S = {S1, . . . , Sn/k} is a “perfect matching in

K(k)
n if Si ∩ Sj = ∅ for i 6= j.

There are perfect matchings in K(k)
n . (How many?)

Is there a decomposition of
(

[n]
k

)
into perfect mat-

chings?

Not obvious already for k = 3 (Peltesohn, 1936)

k = 4 (Bermond)

Theorem (Baranyai, 1973) For every k|n, there is a
decomposition of

(
[n]
k

)
into perfect matchings.
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Proof of Baranyai’s Theorem

Induction on the size of the underlying set [n].
NOT the way you would think!!!

We imagine how the m = n
k pairwise disjoint k-sets

in each of the M =
(
n−1
k−1

)
=

(
n
k

)
/m “perfect mat-

chings” would develop as we add one by one the ele-
ments of [n].

A multiset A is an m-partition of the base set X if A
contains m pairwise disjoint sets whose union is X.

Remarks
An m-partition is a “perfect matching” in the making.
Pairwise disjoint⇒ only ∅ can occur more than once.

Stronger Statement For every l, 0 ≤ l ≤ n there
exists M m-partitions of [l], such that every set S oc-
curs in

(
n−l
k−|S|

)
m-partitions (∅ is counted with multi-

plicity).

Remark For l = n we obtain Baranyai’s Theorem sin-
ce
(

0
k−|S|

)
= 0 unless |S| = k, when its value is 1.
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Proof of Stronger Statement: Induction on l.

l = 0: Let all Ai consists of m copies of ∅.
l = 1: Let all Ai consists of m − 1 copies of ∅ and 1

copy of {1}.

Let A1, . . . ,AM be a family of m-partitions of [l] with
the required property.
We construct one for l + 1.

Define a network D:

V (D) = {s, t} ∪ {Ai : i = 1, . . . ,M} ∪ 2[l].

E(D) = {sAi : i ∈ [M ]} ∪ {AiS : S ∈ Ai}
∪ {St : S ∈ 2[l]}.

Edge Ai∅ has the same multiplicity as ∅ in Ai.

Capacities: c(sAi) = 1

c(AiS) any positive integer.

c(St) =
(
n−l−1
k−|S|−1

)
.



There is flow f of value M :

Flow values: f(sAi) = 1

f(AiS) = k−|S|
n−l

f(St) =
(
n−l−1
k−|S|−1

)
.

Remark. Edges of type 1 and 3 have maximum flow
value.

Claim f is a flow. 2

f is clearly maximum (val(f) = cap({s}, V \ {s})).

Integrality Theorem ⇒ there is a maximum flow g

with integer values. So
g(sAi) = f(sAi) = 1 and

g(St) = f(St) =
(
n−l−1
k−|S|−1

)
.

By the conservation constraints at Ai there exists a
unique Si for each i = 1, . . . ,M such that g(AiSi) =

1.



Define m-partitions

A′i = Ai \ {Si} ∪ {Si ∪ {l + 1}}

of the set [l + 1].

Claim {A′1, . . . ,A
′
M} is an appropriate family of m-

partitions of [l + 1].

Proof. Let T ⊆ [l + 1].

If l+1 ∈ T , then T occurs inA′i iff for S = T \{l+1}
we have g(AiS) = 1. By conservation at vertex S:

|{i ∈ [M ] : g(AiS) = 1}| = g(St) =
( n− (l + 1)

k − (|S|+ 1)

)
.

If l + 1 6∈ T , then T occurs in A′i iff T ∈ Ai and
g(AiT ) = 0. The number of these indices i by induc-
tion and the above is equal to( n− l

k − |T |

)
−
( n− (l + 1)

k − (|T |+ 1)

)
=
(n− (l + 1)

k − |T |

)
.
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