Recall: Connectivity

A separating set (or vertex cut) of a graph G is a set
S C V(G) such that G — S has more than one com-
ponent. For G #= Ky, the connectivity of GG is

= min{|S| : S is a vertex cut}.

By definition, =n — 1.

A graph G is k-connected if v(G) > k + 1 and there
is no vertex cut of size k — 1. (i.e. k(G) > k)

Examples. k(Knm) = min{n,m}

K(Qqg) =d

Decision problem: “Is G k-connected?” is in co-NP.
Is it also in NP?
How about P?

Remark. 1-connectivity isin P: BreadthFirstSearch
(BFS) and DepthFirstSearch (DFS) find a span-
ning tree of G (if it exists) in O(v(G) + e(G)) time
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Recall: Edge-connectivity
An edge cut of a multigraph G is an edge-set of the
form [S,S], with®) = S = V(G)and S =V (G) \ S.

ForS, T CV(QG), [S,T] :={xye€ E(G) :x € S,y € T}.

The edge-connectivity of G is
= min{ |[S, S]] : [S,S]is an edge cut}.

A graph G is k-edge-connected if there is no edge cut
of size k — 1 (i.e. ' (G) > k).

Theorem. (Whitney, 1932) If GG is a simple graph, then
K(G)<K'(G)<8(G).

Homework. Example of a graph G with x(G) = k,
'(G) =1,(G) =m,forany 0 < k<l <m.

HW G is 3-regular — «(G) = '(G).



Recall: Characterization of 2-connectivity

Theorem. (Whitney,1932) Let G be a graph, n(G) >
3. Then G is 2-connected iff for every u,v € V(G)
there exist two internally disjoint «, v-paths in G.

Theorem. Let G be a graph with n(G) > 3. Then the
following four statements are equivalent.

(i) G is 2-connected

(1) Forall z,y € V(@G), there are two internally dis-
joint =, y-path.

(#33) For all z,y € V(G), there is a cycle through x
and y.

(iv) 6(G) > 1, and every pair of edges of G lies on a
common cycle.

Expansion Lemma. Let G’ be a supergraph of a k-connected
graph G obtained by adding one vertex to V' (G) with at least
k neighbors.

Then G’ is k-connected as well.

Corollary 2-connectivity is in NPnco-NP.



Menger’'s Theorem

Given z,y € V(G),asetS C V(G) \ {z,y} is an
x,y-cut if G — S has no x, y-path.

A set P of paths is called pairwise internally disjoint
(p.1.d.) if for any two path Py, P> € P, P; and P> have
no common internal vertices.

Define

= min{|S|: Sisan z,y-cut,} and
= max{|P| : P is a set of p.i.d. x, y-paths}

Local Vertex-Menger Theorem (Menger, 1927) Let
x,y € V(G), such that zy ¢ E(G). Then

k(z,y) = Az, y).
Corollary (Global Vertex-Menger Theorem) A graph

GG is k-connected iff for any two vertices xz,y € V(G)
there exist k£ p.i.d. x, y-paths.

Proof: Lemma. For every e € E(G), k(G —e) > k(G) — 1.

Corollary “k-connectivity” is in NPnco-NP



Edge-Menger

Given z,y € V(G), aset FF C E(G) is an z,y-
disconnecting set if G — F' has no x, y-path. Define

= min{|F| : F'is an z, y-disconnecting set, }
= max{|P| : Pis asetof p.e.d.” z, y-paths}

* p.e.d. means pairwise edge-disjoint

Local Edge-Menger Theorem For all z,y € V(G),
K (z,y) = X (z, ).

Proof. Apply Menger's Theorem for the line
graph of G’, where V(G') = V(G) U {s,t} and
E(G") = E(G) U {sz,yt}.

Corollary (Global Edge-Menger Theorem) Multigraph
(G is k-edge-connected iff there is a set of k p.e.d.x, y-
paths for any two vertices x and y.

Corollary “k-edge-connectivity” is in NPNco-NP
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Network flows

Network (D, s, t,c); D is a directed multigraph,
s € V(D) is the source, t € V(D) is the sink,
¢ E(D) — IRt U {0} is the capacity.

Flow f is a function, f : E(D) — IR
@) = flow)

vV—U

fw) =Y fuw).

U—rv

Flow f is feasible if

(i) f+(v) = f~(v) for every v # s, t (conservation
constraints), and

(1) 0 < f(e) < c(e) for every e € E(D) (capacity
constraints).

value of flow, val(f) = f—(t) — £ (1).

maximum flow: feasible flow with maximum value
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Example

O-flow




f-augmenting path

G': underlying undirected graph of network D

s, t-path s=wvg,eq,v1,€2...Vp_1,€, V=t ING
IS an f-augmenting path, if for every 2

(7) f(e;) < c(e;) if e; is a “forward edge”

(i1) f(e;) > Oif ¢; is a “backward edge”

Tolerance of the path P is min{e(e) : e € E(P)},
where e(e) = c(e) — f(e) if e is forward, and
e(e) = f(e) if e is backward.

Lemma. Let f be feasible and P be an f-augmenting
path with tolerance z. Define

f'(e) ;= f(e) + z if e is forward,

f'(e) := f(e) — zif e is backward.

f'(e) .= f(e) ife ¢ E(P),

Then f’ is feasible with val(f') = val(f) + z.



Characterization of maximum flows

Characterization Lemma. Feasible flow f is of maxi-
mum value iff there is NO f-augmenting path.

Proof. = Easy.
< Suppose f has no augmenting path.

S :={v e V(D) : 3 f-augmenting path* from s to v}.
Thent ¢ S and
Y. )= > fley— >  fle)
e€|S,S] e€|S,S] e€[S,S]
We feel, that

(1) val(f*) < > ec[S.3] c(e) for any feasible flow f*,
and

(2) val(f) = Xeci0.01 f(€) —Xecia.q f(e), for any
QCV(D),seQ,t¢Q.

Right? Let’s see



The value of feasible flow Proof of (2)

Lemma If f is any feasible flow, s € Q, t € Q, then

Y. fle)— > fle) = wal(f).
ec[Q,Q)] e€[Q,Q)]

Proof. By induction on |Q]. If |Q| = 1 then Q = {t}
and by definition = (¢) — f(t) = wval(f).

Let |Q| > 2andletx € Q, = # t.
Define R = Q U {z}. Since |R| < |Q|, by induction

val(f) = ) fle)— > f(e)

e€[R,R] e€[R,R]
= Y fled- Y fle+ > flau
e€[Q,Q] e€[Q,Q] ueQ)
— > fluz)+ > flzv) — ) f(vz)
ueq) vER vER
= > flee- > fle+ @ - ()
e€[Q,Q] e€[Q,Q]

Remark. val(f) = f1(s) — f=(s).
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Source/sink cuts Proof of (1)

[S,5] :={(u,v) €e E(D) :ue S,ve S}tisa
source/sink cutifs € Sandt e S

capacity of cut: cap(S,S) = > ec[S.5] c(e).

Lemma. (Weak duality) If f is a feasible flow and [S, S]
IS a source/sink cut, then

val(f) < cap(S,S).

Proof.

cap($, S)

> c(e)

ec[S,S]

> f(e

ec[S,S]

> fle)y— > f(e)
e€[S,S] e€[S,S]
= wal(f).

1V

Vv
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Max flow-Min cut Theorem

Max Flow-Min Cut Theorem (Ford-Fulkerson, 1956)
Let f be a feasible flow of maximum value and [S, S]
be a source/sink cut of minimum capacity. Then

val(f) = cap(S, S).

Proof. (Corollary to proof of Characterization Lemma)
Define

S:={v e V(D) : 3 f-augmenting path* from s to v}.

Since f is maximum, f has no augmenting path. Then
t € S and of course s € S.

cap(S,S) = Z c(e)
ec[S,S]
= > fley— >  f(e)
e€[S,5] e€[S,S]

= wal(f).
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Edge-Menger Theorem

Recall:

;= min{|F| : F'is an z, y-disconnecting set, }
= max{|P| : P is aset of p.e.d.* =, y-paths}
* p.e.d. means pairwise edge-disjoint

Local-Edge-Menger Theorem For all z,y € V(G),

K (z,y) = XN (z,y).
Proof. Build network (D, z,y,c) where V(D) = V(G),
E(D) = {(u,v), (v,u) : wv € E(G)} and
c(le) =1foralle € E(D).
e 1-to-1 correspondence between x, y-disconnecting
sets and sorce/sink cuts. Hence
k' (x,y) = mincap(S,S).
e each set of p.e.d. path determines a feasible flow.
So M (z,y) < maxwalf.

But what if there is some clever way to direct different-
ly a flow with larger overall value?? This flow then
must have fractional values on some of the edges.
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Ford-Fulkerson Algorithm

Initialization f =0
WHILE there exists an augmenting path P
DO augment flow f along P

return f

Corollary. (Integrality Theorem) If all capacities of a
network are integers, then there is a maximum flow
assigning integral flow to each edge.

Furthermore, some maximum flow can be partitioned
into flows of unit value along path from source to sink.

Running times:

e Basic (careless) Ford-Fulkerson: might not even
terminate, flow value might not converge to maxi-
mum;
when capacities are integers, it terminates in time
O(m|f*|), where f*is a maximum flow.

e Edmonds-Karp: chooses a shortest augmenting
path; runs in O(nm?2)
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Example

The Max-flow Min-cut Theorem is true for real capaci-

ties as well,
BUT our algorithm might fail to find a maximum flow!!!

99 99

99 99

Example of Zwick (1995)

Remark. The max flow is 199. There is such an unfortunate
choice of a sequence of augmenting paths, by which the flow

value never grows above 2 + /5.
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Menger’'s Theorem

Recall:

= min{|S|: Sisan z,y-cut,} and
= max{|P| : P is a set of p.i.d. x, y-paths}

Local-Vertex-Menger Theorem Let z, y € V(G), such
that zy € E(G). Then

k(z,y) = Mz,y).

Proof. We apply the Integrality Theorem for the auxili-
ary network (D, z1,y~, ¢).
V(D) = {v 0T 1v e V(G)}
E(D) = {(uTv7) 1 uv € E(G)}
U{(v_fv+) v e V(G)}
c(utv™) = occ*and c(v—vT) = 1.

*or rather a large enough integer, say |V (D)|.
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Application: Baranyai's Theorem

X' (Kpn) = n — 1is saying: E(Ky) can be decompo-
sed into pairwise disjoint perfect matchings.

k-uniform hypergraphs? E(/Cg“)) — (D};&])

Let kln. S = {51,...,5,/} is a “perfect matching in
IC%’“) if S; NS; = 0 fori# j.

There are perfect matchings in IC%’“). (How many?)

Is there a decomposition of ([’Z]> into perfect mat-
chings?

Not obvious already for k = 3 (Peltesohn, 1936)
k = 4 (Bermond)

Theorem (Baranyai, 1973) For every k|n, there is a
decomposition of ([Z]) into perfect matchings.
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Proof of Baranyai's Theorem

Induction on the size of the underlying set [n].
NOT the way you would think!!!

We imagine how the m = 7 pairwise disjoint k-sets
in each of the M = (Z‘%) = (Z’) /m “perfect mat-

chings” would develop as we add one by one the ele-
ments of [n].

A multiset A is an m-partition of the base set X if A
contains m pairwise disjoint sets whose union is X.

Remarks
An m-partition is a “perfect matching” in the making.
Pairwise disjoint = only () can occur more than once.

Stronger Statement For every [, 0 < [ < n there
exists M m-partitions of [I], such that every set S oc-

n_

curs in (k_|5|) m-partitions (0 is counted with multi-
plicity).

Remark For [ = n we obtain Baranyai's Theorem sin-

ce (k_0|5|) = 0 unless |S| = k, when its value is 1.

18



Proof of Stronger Statement: Induction on .

| = O: Let all A; consists of m copies of (.

| = 1: Let all A; consists of m — 1 copies of ) and 1
copy of {1}.

Let A1,..., Ay be afamily of m-partitions of [I] with
the required property.
We construct one for [ 4 1.

Define a network D:

V(D) ={s,t}U{A;:i=1,...,M}yu2ll

E(D) ={sA;:ie€ [M]}U{A;S:S e A}
U{St: S e 2l

Edge A;0 has the same multiplicity as 0 in A,;.

Capacities: c¢(sA4;) = 1
c(A;S) any positive integer.
_ ( n—=l-1
e(58) = ({511



There is flow f of value M:

Flow values: f(sA;) =1
f(a8) =21

n—I
_ ( n—l-1
£58) = (Zjs1-1):
Remark. Edges of type 1 and 3 have maximum flow
value.

Claim f is a flow. O
f is clearly maximum (val(f) = cap({s}, V \ {s})).

Integrality Theorem =- there is a maximum flow g
with integer values. So
g(sA;) = f(sA;) = 1 and

—1-1
g(St) = f(St) = (" 521):
By the conservation constraints at .4; there exists a

unique S; foreachi = 1,..., M suchthat g(A4;S;) =
1.



Define m-partitions

Ai = A\ {Siyu{S;u{l+1}}
of the set [I + 1].

Claim {A7,..., A’} is an appropriate family of m-
partitions of [[ 4+ 1].

Proof. LetT C [l + 1].

Ifi+1 € T, then T occurs in A iff for S = T\ {l41}
we have g(.A;S) = 1. By conservation at vertex S:

. n—({4+1)

1€ M| :g(A;S) =1} = g(S5t) = :
{i € [M] : g(A;S) = 1}| = g(St) (k—(|S|—|—1)>
If i 4+ 1 ¢ T, then T occurs in A, iff T € A; and
g(A;T) = 0. The number of these indices by induc-
tion and the above is equal to

n —I n—U+1)y m—-U+1)
b)) = Camm )



