
Algorithmic Combinatorics (Discrete Mathematics II) WS 2014 / 2015
Tibor Szabó

Some notes about the first week.

These are some rough informal notes about the material of the first week – to augment
your own notes.

Algorithms, efficiency.
Algorithm: (informally) finite set of precise instruction for performing a calculation or

solving problem.
Input, Output, (Example: Kruskal’s Algorithm. Input: weighted graph (in form of an

n-by-n matrix), Output: list of edges (pairs of vertices) forming a spanning tree and having
minimum weight)

Definiteness: each step of the algorithm must be defined precisely
Correctness: correct output should be produced for every input
Finiteness: produce output in finitely many steps
How to describe an algorithm? different amount of detail: computer program; pseu-

docode; words/sentences; precision!!! (at every imaginable scenario the algorithm should
uniquely define the next step. In a wordy description we might skip some of the precision
(if it is indeed insignificant with respect to correctness or our running time analysis), for
example we might not want to define precisely which ”arbitrary” element the algorithm
chooses. (This could mean for example that there is a predefined order on the elements and
the algorithm chooses the smallest eligible element. However, in case we choose to ignore
what ”arbitrary” means for us, we must live with the ”devil” giving us his choice, which will
be the ”worst” possible element for us.))

Analysis: How fast is the algorithm? How much space (memory) does it require? time
complexity; space complexity;

Running time: number of bit operations/elementary steps/... How fast is an algorithm
A? Running it on input I takes T (A, I) steps.

Given an integer n, how long does it take that algorithm A surely finishes on any input
of size n? No matter which input of size n it is given! Take the maximum of T (A, I) over
all inputs I of size n, denote this with TA(n). This is the worst-case complexity of A. This
is the worst case complexity of A.

Average-case complexity: Given a probability distribution on all inputs of size n (Say
the uniform distribution: choose an input uniformly at random among all inputs of size n)
take the expected value of T (A, I) and denote it with ATA(n). We will not talk about this
in this course.

What is considered efficient? Roughly: an algorithm whose running time is bounded by
a polynomial of the input size. Why is this a ”reasonable” definition? Consider the following

1

table:

Input size Number of bit operations

n 1000000n 1000n log n 10n2 2n n!
10 0.01 sec 0.00003 sec 0.000001 sec 0.000001 sec 0.003 sec
100 0.1 sec 0.0007 sec 0.0001 sec 40000000000000 years > 10100 years

1000000 17 min 20 sec 2h 50 min > 10100 years

Estimates.

• Stirling formula: n! ∼
√

2πn
(
n
e

)n
For every n ∈ N:

(
n
e

)n
< n! < n

(
n
e

)n
• Binomial coefficients:

(
n
k

)k ≤ (
n
k

)
≤

(
ne
k

)k
• Almost 1: e−

x
1−x ≤ 1− x ≤ e−x

Our Asymptotic notation: Let f, g : N→ R be two functions.

• f(n) = O(g(n)) if there exist constants C and K such that |f(n)| ≤ C|g(n)| for every
n ≥ K

• f(n) = Ω(g(n)) if g(n) = O(f(n))

• f(n) = Θ(g(n)) (or sometimes we write f(n) ∼ g(n)) if f(n) = O(g(n)) and f(n) =
Ω(g(n))

• f(n) = o(g(n)) (or sometimes we write f(n)� g(n)) if limn→∞
f(n)
g(n)

= 0

• f(n) = ω(g(n)) if g(n) = o(f(n))

• f(n) ≈ g(n) if limn→∞
f(n)
g(n)

= 1

Sorting.
Given n distinct numbers a1, a2, . . . , an, how long does it take to sort them completely.

That is find the π ∈ Sn, such that aπ(1) < aπ(2) < · · · < aπ(n). How should we measure
running time? We count number of comparisons: ”Is ai < aj?”

If A is a sorting algorithm and π ∈ Sn, then let T (A, π) be the number of compar-
isons A does until outputting aπ(1) < aπ(2) < · · · < aπ(n) when starting with the sequence
a1, a2, . . . , an.

Let TA(n) = maxπ∈Sn T (A, π) be the worst case running time of algorithm A.
Algorithm MergeSort(a1, a2, . . . , an)

Step 0. If n = 1, then return list as ordered

Step 1. Divide sequence into (almost) equally long parts (a1, . . . , abn/2c) and (abn/2c+1, . . . , an)

2

Step 2. Apply MergeSort on both of them and create ordered lists aπ1(1) < · · · < aπ1(bn/2c)
and aπ2(bn/2c+1) < · · · < aπ2(n), where π1 is a permutation of {1, . . . , bn/2c} and π2 is a
permutation of {bn/2c+ 1, . . . , n}.

Step 3. Merge the two sorted lists by iteratively comparing the two smallest elements, removing
the smaller one from its list and placing it to the top of the final list. When one of the
list gets empty, put the other list unchanged on the top of the final list.

Real Time exercise Use MergeSort to sort 3,1,5, 2, 4. How many comparisons did you
make?

Let M(n) = TMergeSort(n) the worst case running time of MergeSort. For the simpler
analysis, first we assume that n = 2k. Then

M(n) ≤ 2M(n/2) + n− 1.

So

M(2k) ≤ 2M(2k−1) + 2k − 1 ≤ 2
(
2M(2k−2) + 2k−1 − 1

)
+ 2k − 1

≤ 22M(2k−2) + 2k − 2 + 2k − 1

≤ · · ·
≤ 2iM(2k−i) + i2k − (2i − 1) ≤ 2i

(
2M(2k−i−1) + 2k−i − 1

)
+ i · 2k − (2i − 1)

= 2i+1M(2k−(i+1)) + (i+ 1)2k − (2i+1 − 1)

≤ · · ·
≤ 2kM(1) + k2k − (2k − 1) = n log2 n− n+ 1,

since M(1) = 0 (we do not need to make single comparison if there is only one number on
the list).

How fast is MergeSort compared to other sorting algorithms? Is there a faster one?
One which maybe sorts just with O(n log log n) comparisons? This question involves the
complexity of the sorting problem itself. What is the fastest possible algorithm that will sort
n numbers? How many comparison queries must it make in the worst case?

These are type of questions we must immediately ask when we see an algorithm. Is
there a faster one? This question is very difficult in most of the cases. As the story of
Arthur and Merlin indicated we do not expect an algorithm which decides whether a graph
is Hamiltonian or not in polynomial time. To prove this we would need to consider all
possible algorithms for deciding Hamiltonicity of a graph and for each of them come up with
an example of a graph (or rather a graph sequence on an increasing number of vertices) such
that the algorithm runs on the graph longer than any polynomial time.

Complexity of a problem: taking the ”best algorithm” what is its worst case complexity?
Formally, we look at the minimum of TA(n) taken all algorithm solving the problem. In
general it is very difficult to give lower bounds.

Let T (n) = minA TA(n) the worst case running time of the ”fastest” sorting algorithm.

3

By the analysis of MergeSort we have an upper bound: T (n) ≤ n log2 n. This is one of
the rare examples of a problem when we can give a tight lower bound. This is mostly due to
the fact, that there is a very efficient algorithm (MergeSort) which is almost as good as the
limit of any algorithm established by some ”simple” reason: the information theoretic lower
bound. This practically means the following: 1 bit of information (a 0 or a 1) cannot be sent
with less than 1 bit. After T (n) questions (each of which has two possible answers YES or
NO) we obtain T (n) bits of information. If after asking T (n) questions we gained enough
information which of the n! permutations is the correct one. Well, how much information is
that? To describe an element of a n!-element set we need to use at least dlog2(n!)e bits. So
T (n) should be at least as large as log2(n!).

Let’s see first whether there is an algorithm which could have gotten the correct order
of any sequence a1, a2, a3, a4, a5 with less than 7 comparisons (what we needed for 3, 1, 5, 2, 4
with MergeSort. Consider the lower bound proof via a game. One player, called Al, asks a
comparison question, the other player, Carole (i.e., Oracle) answer with Yes or No. There
are 5! = 120 permutations. Each question of Al eliminates some of them from consider-
ation. After Al’s first question, by symmetry, there are exactly 60 eligible permutations
remaining. In fact after each ofthe questions of Al, the set of remaining eligible permuta-
tions is partitioned into two classes, based on whether the answer to Al’s question would
be YES or NO, respectively. One of these sets is obviously at least half of the size of the
original set. Then Carole can always answer the question with the answer for which the
set of remaining eligible permutations is larger, and hence it is at least half of what was
eligible before. Hence after just six questions, the set of still eligible permutations is at least
dddddd120/2e /2e /2e /2e /2e /2e = 2, so Al cannot possible know which one of the two were
asked.

To argue formally, let us fix an arbitrary sorting algorithm A with worst case complexity
T (n). We prove that if 2T (n) < n!, then there exist a permutationπA ∈ Sn, such that A gives
an incorrect output when run with input πA. Such an algorithm consists of a description
of the next comparison query in any imaginable scenario (history) of the algorithm. Each
answer to a question of Sv reduces the set of permutations that are still possible as a solution.
For each i = 0, 1, 2, . . . , T (n) we inductively define a partition of Sn of all permutations into 2i

subsets Sv, indexed by vectors v ∈ {Y ES,NO}i with the property that for any permutation
π ∈ Sv if we run A with input π, then for every j = 1, 2 . . . , i we get answer vj to the jth
question of A. The set Sv contains all permutations that are still possible after receiving
answers (v1, . . . , vi) for the first i questions of A.

For the empty vector v = ∅ we define the 1-element partition S∅ = Sn. Assume that i ≥ 0
and we have defined the appropriate partition for i. For a given vector v ∈ {Y ES,NO}i
consider the set Sv of permutations that satisfy the first i questions that were asked. Given
these answers, the (i + 1)th question of A is specified, say it is: ”Is ap < aq?” (Note that
this question could depend on the answers to the first i queries.) Then the answer to the
(i + 1)th query of Algorithm partitions Sv according to whether ap < aq or aq > ap. If
ap < aq for some permutation π ∈ Sv, then π is put into set Sv1,...,vi,Y ES, otherwise it is put
into Sv1,...,vi,NO.

4

Since we assumed 2T (n) < n!, after T (n) steps there is a partition of Sn into less than n!
parts, hence by the Pigeonhole Principle, there is a part Sv which contains more than one
distinct permutations. The algorithm A, when receiving the answers (v1, . . . , vT (n)) in this
order, will output a permutation π in at most T (n) steps. Then π ∈ Sv, but there exists
another permutation πA ∈ Sv, πA 6= π, such that upon input πA, the algorithm A would ask
the same questions, would receive the same answers and hence would give the same output
π, which in this case would be wrong.

So 2T (n) ≥ n! and hence by Stirling’s formula

T (n) ≥ log2(n!) = n log2 n− n log2 e+
1

2
log2 n+ log2

√
2π + o(1) = n log2 n(1 + o(1)).

Hence the MergeSort algorithm has asymptotically optimal worst case running time.
Running time of Kruskal’s Algorithm. Given a connected graphG with edge weights

w : E(G)→ R. The algorithm does the following.

• order edges according to weight: w(e1) ≤ · · · ≤ w(em)

• Maintain a spanning forest H. Start with V (H) = V (G) and E(H) = ∅. For each
vertex v, maintain an index cv denoting the index of the component v is in. Start with
c({vi}) = i

• Iteratively, following the above order, check whether the next edge uw with smallest
weight creates a cycle. For this check whether cu = cw. If YES, do nothing and iterate.
If NO, then update H := H + uw and for every z ∈ V with cz = cw, update cz := cu.
Then iterate.

What is the running time for a graph with n vertices and m edges? The sorting at the
beginning takes O(m logm) comparisons. In each iteration we check whether they are in the
same component of H, that is, whether cu = cw, which takes just one step, then we either
do nothing more or perform the updating of the index of the components of each vertex,
which takes at most O(n) steps. There are m iterations, so the cumulative running time is
O(m logm) +O(nm). (With appropriate data structure the second step only needs m logm
steps)

5

