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9.2 The Local Lemma

In this section we discuss a classic result of Erdős and Lovász generalizing the
setup of Claim 2.2.1. We will guarantee the 2-colorability of a hypergraph, but
instead of the total size, we will require a bound only on the number of edges
intersecting any fixed edge.

Let (X,F) be a hypergraph. The degree deg(x) = degF (x) of a vertex is the
number of edges of F containing x, and ∆(F) = max{deg(x) : x ∈ V (F)} is the
maximum degree of F . The line graph L(F) is the graph defined on vertex set
V (L(F)) = F with edge set E(L(F)) = {ef : e, f ∈ F , e ∩ f #= ∅}. So ∆(L(F))
represents the maximum, over all edges e, of the number of those edges of F
(distinct from e) which intersect e.

Clearly ∆(L(F)) ≤ |F|. It turns out that a small loss in the constant factor of the
assumption of Claim 2.2.1 already allows us to show 2-colorability of a hypergraph
for which only ∆(L(F)) is bounded (instead of |F|). Our rendition here is based
on the one in [10].

Theorem 9.2.1 (Erdős-Lovász [29]). Let F ⊆
(X
k

)
be a k-uniform hypergraph. Then

∆(L(F)) ≤ 2k−3 ⇒ F is 2-colorable.

Proof. Let F = {A1, . . . , Am}. We will apply the same random coloring proce-
dure as for Claim 2.2.1 and color each vertex independently, uniformly at random
with red or blue. Note however the following difficulty: the expected number of
monochromatic edges is 2|F|

2k , which could be arbitrarily large, as we have no re-
striction on the size of F . So, unlike in the proof of Claim 2.2.1, here we cannot
conclude anything based on immediate probabilistic considerations.

Of course, if the hypergraph consisted only of pairwise disjoint edges, then all
events would be mutually independent and everything would be easy:

Pr [no Ai is monochromatic] =
m∏

i=1

Pr [Ai is properly colored] =
m∏

i=1

(
1− 2

2k

)

=

(
1− 1

2k−1

)m

> 0. (9.1)

Thus a proper coloring would exist. Note that the probability of success is ex-
tremely small, but it does not matter, since for the conclusion we only need that
it is positive.

We hope to save this argument by capitalizing on the assumption that each edge
intersects only a limited number of other edges. This condition assures that de-
pendence between “bad events” (the edges being monochromatic) is limited.

For a subset I ⊆ [m] of the indices we introduce the notation ProperI to indicate
the event that in the random coloring each Ai, i ∈ I, has vertices of both colors
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and for an integer j ∈ [m], we let Monoj denote the event that Aj is fully red or
fully blue.

First we show that having a proper coloring of the first i sets does not influence too
adversely the chances of the (i + 1)st set being properly colored: the probability
of failure is only a multiplicative factor 2 worse than it would be in the case of a
completely disjoint (and hence independent) Ai+1. The theorem will then follow
from this claim relatively easily.

Claim 9.2.2. For all i ∈ [m], we have

Pr
[
Proper[i] ∩ Monoi+1

]
≤ 2

2k−1
Pr

[
Proper[i]

]
.

Proof. In order to use induction we prove a seemingly more general formulation:
For all I ⊆ [m] and for all j ∈ [m] \ I we have

Pr [ProperI ∩ Monoj ] ≤
2

2k−1
Pr [ProperI ] . (9.2)

We prove this statement by induction on |I|. For given I ⊆ [m] and j ∈ [m] \ I let
J = J(I, j) ⊆ I be the set of those indices ! ∈ I for which A! ∩Aj #= ∅. Note that
by our assumption on the maximum edge neighborhood size, |J | ≤ 2k−3.

If J = ∅, then Aj is disjoint from
⋃

i∈I Ai and hence it being monochromatic
is independent from anything that happens with the Ai, i ∈ I. So instead of
inequality (9.2) we have an equality, with the constant 2

2k−1 replaced by 1
2k−1 :

Pr [ProperI ∩ Monoj ] =
1

2k−1
Pr [ProperI ] .

The base case |I| = 0 of our induction is a special case of this as ∅ = I ⊇ J .

Assume now that I ⊇ J #= ∅. By the definition of J , Aj is disjoint from
⋃

i∈I\J Ai,
hence it being monochromatic is independent from whatever happens to the Ai, i ∈
I \ J . Thus

Pr
[
ProperI\J ∩ Monoj

]

Pr
[
ProperI\J

] =
1

2k−1
. (9.3)

We want to compare our goal inequality (9.2) to this equality. Using induction we
will replace I \ J with I and the equality with an inequality while paying only
a price of a multiplicative factor 2. For the numerator we just use the trivial set
inclusion

ProperI ∩ Monoj ⊆ ProperI\J ∩ Monoj (9.4)

to estimate the probabilities. For the denominator we note that

ProperI = ProperI\J \
⋃

i∈J

(
ProperI\J ∩ Monoi

)
,
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and apply a simple union bound for the probabilities. Since |I \ J | < |I|, the
induction hypothesis also applies and we have

Pr [ProperI ] ≥ Pr
[
ProperI\J

]
−
∑

i∈J

Pr
[
ProperI\J ∩ Monoi

]

≥ Pr
[
ProperI\J

]
−
∑

i∈J

2

2k−1
· Pr

[
ProperI\J

]

= Pr
[
ProperI\J

](
1− 2|J |

2k−1

)

≥ Pr
[
ProperI\J

]
· 1
2
. (9.5)

The last inequality holds because |J | ≤ 2k−3. Estimating the numerator and de-
nominator in (9.3) by (9.4) and (9.5), respectively, implies (9.2). !

To complete the proof of Theorem 9.2.1 we apply Claim 9.2.2 repeatedly and
obtain a lower bound on the probability of success. Our lower bound will be only
slightly worse than what happens in (9.1), the mutually independent case:

Pr
[
Proper[m]

]
= Pr

[
Proper[m−1]

]
− Pr

[
Proper[m−1] ∩ Monom

]

≥ Pr
[
Proper[m−1]

](
1− 2

2k−1

)

≥ · · ·

≥ Pr
[
Proper[1]

](
1− 2

2k−1

)m−1

≥
(
1− 2

2k−1

)m

> 0.

That is, the random coloring succeeds with positive probability in coloring the
set X such that each Ai is properly colored. This concludes the proof that F is
2-colorable. !

The general formulation of the above theorem, talking about abstract “bad events”
(instead of edges being monochromatic) in an abstract probability space (instead of
the uniform space of two-colorings ofX) is known as the Lovász Local Lemma. The
Local Lemma was originally invented to properly color hypergraphs, but it went
on to become one of the most fundamental tools of probabilistic combinatorics.
The multiplicative factor in the above proof was optimized in Spencer [80]; its
proof is an instructive exercise.

Theorem 9.2.3 (Lovász Local Lemma). Let E1, E2, . . . , Em be events in some prob-
ability space. Let d and p be such that for every i ∈ [m]
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(1) there exists a set Γ(i) ⊆ [m] of at most d indices, such that Ei is mutually
independent from the family {Ej : j ∈ [m] \ (Γ(i) ∪ {i})} of events, and

(2) Pr[Ei] ≤ p.

If ep(d+ 1) < 1, then Pr
[⋂m

i=1 Ei

]
> 0.

Proof. Exercise. !
Let us practice the application of the Local Lemma on hypergraph 2-coloring.

Proposition 9.2.4. Let F ⊆
(X
k

)
be a k-uniform hypergraph. Then

(i) ∆(L(F)) ≤ 2k−1

e − 1 ⇒ F is 2-colorable.

(ii) ∆(F) ≤ 2k−1

ek ⇒ F is 2-colorable.

Proof. Exercise. !

9.3 The Neighborhood Conjecture

The Local Lemma is a powerful existence statement, but unlike Claim 2.2.1 in
Chapter 2, it is really just about existence: the guaranteed probability is exponen-
tially small in the input size. Hence the following two problems arise naturally.

Problem 1. Can one find an efficient, ideally even deterministic, algorithm to
properly two-color hypergraphs which satisfy the assumption of the Local Lemma?

Problem 2. Can one prove that if a hypergraph satisfies the conditions of the Local
Lemma, then it is a Breaker’s win?

In Chapter 2 the analogous two questions were discussed after proving Claim 2.2.1
with the first moment method. The Erdős-Selfridge Theorem answered both of
them beautifully in the affirmative. In Chapter 2, however, the probability of
success of the random coloring process was so high that potentially repeating
it 100 times led to an efficient randomized algorithm. In the setup of the Local
Lemma, on the other hand, the probability of success can be exponentially small,
so even the possibility of an efficient randomized algorithm is unclear.

The success of the Erdős-Selfridge Criterion in making the first moment method si-
multaneously algorithmic and the basis of a game certainly provides an inspiration
to study Problems 1 and 2 together. It might seem plausible that an affirmative
answer to the algorithmic Problem 1 would come through positional games, maybe
exactly via the positional game theoretic Problem 2.

Eventually this did not turn out to be the case, or at least not directly. While Prob-
lem 1 is completely solved by now, Problem 2 is still very much open. The ultimate
solution of Problem 1 does not use positional games, but games were instrumental
on the road to it. For Problem 1 the initial breakthrough was obtained by Beck [7]
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in 1990 using ideas he developed to study multidimensional Tic-Tac-Toe games.
His efficient randomized algorithm 2-colored any k-uniform hypergraph F with
∆(L(F)) ≤ 1.1k. Subsequently the base in the upper bound was improved several
times by tweaking the original approach. A second breakthrough by Moser [66]
was achieved in 2010, pushing the upper bound within a small constant factor
of 2k. Soon after, the problem was completely solved by Moser and Tardos [67].
They found an amazingly simple randomized algorithm, which properly 2-colors
any hypergraph F satisfying the conditions of the Local Lemma in nearly linear
time.

Concerning Problem 2, the following bold conjecture, labeled as a “game-theoretic
Local Lemma”, was formulated by József Beck.

Conjecture 9.3.1 (Neighborhood Conjecture, [10, Open Problem 9.1(a)]).

∆(L(F)) < 2k−1 − 1 ⇒ F is a Breaker’s win.

The particular upper bound in the conjecture on the maximum edge neighborhood
size is even larger than the one from the Local Lemma (cf. Proposition 9.2.4),
though other more sophisticated methods [76] ensure at least the existence of a
proper 2-coloring in that large range (even up to ∆(L(F)) < c · 2k

√
k/ ln k). The

conjecture was clearly motivated by the construction of Erdős and Selfridge of
a k-uniform Maker’s win hypergraph G with 2k−1 edges, showing the tightness
of their theorem (see Remark 2.3.6). The maximum neighborhood size in that
construction is 2k−1 − 1, as every pair of edges intersect. No better construction
was known until 2009, when Gebauer [40] disproved the Neighborhood Conjecture
by constructing Maker’s win hypergraphs with maximum neighborhood size less
than 0.74 · 2k−1.

In his monograph [10], Beck also formulated several weakenings of his original
conjecture. Maybe the most interesting form, which should probably inherit the
name “Neighborhood Conjecture”, is stated in terms of the maximum degree ∆
instead of the maximum edge neighborhood size.

Conjecture 9.3.2 (The Reigning Neighborhood Conjecture, [10, Open Problem
9.1(d)]). There is some ε > 0 such that

∆(F) < (1 + ε)k ⇒ F is a Breaker’s win.

The natural parameter to define for this conjecture is

D(k) := min{d : ∃ k-uniform Maker’s win F with ∆(F) ≤ d}.

The currently known best lower bound is D(k) ≥ -k
2 .+ 1, which was an exercise

in Chapter 1. This has been verified to be tight for k = 3 (folklore) and k = 4 by
Knox [59]. The best known upper bound is outrageously far away, even D(k) =
Ω
(
1.999k

)
is a possibility. Deciding whether D(k) = -k

2 .+1 already seems to need
new ideas.
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