
Recall: Matchings in bipartite graphs

Theorem (Marriage Theorem; Hall, 1935) There is a
matching in G saturating X iff |N(S)| ≥ |S| for every
S ⊆ X.

α′(G) = size of largest matching

C ⊆ V (G) is a vertex cover if for every edge e ∈
E(G), e ∩ C ̸= ∅.
β(G) = cardinality of the smallest vertex cover

Theorem. (König (1931), Egerváry (1931))
If G is bipartite then β(G) = α′(G).

Proof. For any minimum vertex cover Q, apply Hall’s
Condition to match Q ∩X into Y \Q and Q ∩ Y into
X \Q. 2

Remark: Not true for general graphs, say for C3 (or for
any odd cycle)

1

Recall: Certificates

Suppose we knew that in some graph G with 1121

edges on 200 vertices, a particular set of 87 edges
is (one of) the largest matching one could find. How
could we convince somebody about this?

Once the particluar 87 edges are shown, it is easy to
check that they are a matching, indeed.

But why isn’t there a matching of size 88? Verifying
that none of the

(
1121
88

)
edgesets of size 88 forms a

matching could take some time...

If we happen to be so lucky, that we are able to exhi-
bit a vertex cover of size 87, we are saved. It is then
reasonable to check that all 1121 edges are covered
by the particular set of 87 vertices.

Exhibiting a vertex cover of a certain size proves that
no larger matching can be found.

2

Certificate for bipartite graphs — Take 1

1. Correctness of the certificate:

A vertex cover Q ⊆ V (G) is a certificate proving that
no matching of G has size larger than |Q|.
That is: β(G) ≥ α′(G), valid for every graph.

2. Existence of optimal certificate for bipartite graphs:

Theorem. (König (1931), Egerváry (1931))
If G is bipartite then β(G) = α′(G).

König’s Theorem ⇒ For bipartite graphs there al-
ways exists a vertex cover proving that a particular
matching of maximum size is really maximum.

Remark. This is NOT the case for general graphs: C5.

3

Certificate for bipartite graphs — Take 2

Let G be a bipartite graph with partite sets X and Y .

1. Correctness of the certificate:

A subset S ⊆ X is a certificate proving that the largest
matching in G has size at most |X| − |S|+ |N(S)|.

2. Existence of optimal certificate:

Theorem (Marriage Theorem; Hall, 1935) There is a
matching in G saturating X iff |N(S)| ≥ |S| for every
S ⊆ X.

Corollary There exists a subset S ⊆ X, such that
α′(G) = |X| − |S|+ |N(S)|.
Proof. Homework.

Problem: Certificate makes sense for bipartite graphs
only.
Goal: Find a certificate for general graphs.

4

Matchings in general graphs

An odd component is a connected component with an
odd number of vertices. Denote by o(G) the number
of odd components of a graph G.

Theorem. (Tutte, 1947) A graph G has a perfect mat-
ching iff o(G− S) ≤ |S| for every subset S ⊆ V (G).

Proof.

⇒ Easy.

⇐ (Lovász, 1975) Consider a counterexample G with
the maximum number of edges.

Claim. G + xy has a perfect matching for any xy ̸∈
E(G).

5

Proof of Tutte’s Theorem — Continued

Define U := {v ∈ V (G) : dG(v) = n(G)− 1}

Case 1. G− U consists of disjoint cliques.

Proof: Straightforward to construct a perfect matching
of G.

Case 2. G− U is not the disjoint union of cliques.

Proof: Derive the existence of the following subgraph.

w y

zx
∈ E(G)

/∈ E(G)

Obtain contradiction by constructing a perfect matching
M of G using perfect matchings M1 and M2 of G+xz

and G+ yw, respectively.

6

Corollaries

Yet another min/max theorem:

Corollary. (Berge,1958) In every graph G, he maxi-
mum number of vertices saturated by a matching is

2α′(G)=min{n− o(G− S) + |S| : S ⊆ V (G)}.

Proof. HW

Corollary. (Petersen, 1891) Every 3-regular graph with
no cut-edge has a perfect matching.

Proof. Check Tutte’s condition. Let S ⊆ V (G).
Double-count the number of edges between an S and
the odd components of G− S.
Observe that between any odd component and S the-
re are at least three edges.

7

Arthur and Merlin – a touch of complexity

A: Show me a pairing, so my 150 knights can marry
these 150 ladies!
M: Not possible!
A: Why?
M: Here are these 93 ladies and 58 knights, none of
them are willing to marry each other.
A: Alright, alright ...

A: Seat my 150 knights around the round table, so that
neighbors don’t fight!
M: Not possible!
A: Why?
M: It will take me forever to explain you.
A: I don’t believe you! Into the dungeon!

8

A YES/NO-problem problem is in the class NP: The
answer YES can be checked “efficiently”
”efficiently”: within a time, which is polynomial in the
size of the input

In other words:
- there is a ”certificate”, which a computer (i.e., Arthur,
i.e., a polynomial time algorithm) can verify within a
reasonable time
Note: the certificate can be provided by an all-powerful
supercomputer (i.e., Merlin)

Examples:
“Does this bipartite graph have a perfect matching?”
(provide perfect matching)
“Does this bipartite graph have no perfect matching?”
(provide vertex cover of size less than n/2; certificate
exists because of König’s Theorem)
“Does this graph have a Hamilton cycle?” (provide Ha-
milton cycle)

Merlin’s Pech: “Does this graph have no Hamilton cy-
cle?” is not (known to be) in NP

A YES/NO-problem is in the class co-NP: The answer
NO can be checked efficiently

Properties having a “good” characterization or a “min/max
theorem” are both in NP and co-NP

Examples:
- ”Is this graph 2-colorable?” (NP: provide a 2-coloring;
co-NP: provide an odd cycle)
- ”Is this graph Eulerian?” (NP: provide an ordered list
of the edges for an Eulerian circuit; co-NP: provide a
vertex with an odd degree; co-NP certificate exists
because of Euler’s Theorem)
- ”Does this graph have a perfect matching?” (NP:
provide a perfect matching; co-NP: provide a subset
S whose deletion creates more than |S| odd com-
ponents; co-NP certificate exists because of Tutte’s
Theorem)
- ”Is this graph k-connected?” (NP: for each two verti-
ces x, y ∈ V (G) provide a list of k internally disjoint
x, y-path; co-NP: provide a cut-set of size less than k;
NP-certificate exists because of Menger’s Theorem)

A YES/NO-problem is in the class P: The answer can
be found efficiently (i.e., there is a polynomial time al-
gorithm to actually obtain the certificate (i.e., no need
for Merlin))

Of course: P ⊆ NP ∩ co-NP

Often: Problems in NP ∩ co-NP are also in P

However: People think P ̸= NP ∩ co-NP

We don’t know: status of problem ”Is there a factor of
n less than k?” (until 2002 the status of the problem
“Is n a prime?” was also not known)

People also think: P ̸= NP (1,000,000 US dollars)

We don’t know: Hamiltonicity, 3-colorability, ∆(G)-edge-
colorability, k-independence set,

NP: “nondeterministic polynomial time”

NP-hard problem: every problem in NP can be redu-
ced to it in polynomial time (consequently, giving a po-
lynomial time algorithm for it would result in a polyno-
mial time algorithm for all problems in NP, and hence
P=NP)

NP-complete problem: NP-hard and contained in NP

Many problems are NP-complete: Hamiltonicity, 3-colorability,
∆(G)-edge-colorability

Approximation algorithm for TSP

Traveling Salesman Problem (TSP)

Input: w : E(Kn) → IR.

Output: Hamilton cycle H of smallest weight w(H) =∑
e∈E(H)w(e).

Special case: Is there a Hamilton cycle in G? (reduc-
tion via 0/1-weights)

Hence it is NP-complete as well (The decision pro-
blem version: Is there Hamilton cycle with weight at
most k?)

A practical approach: Let wOPT be the weight of a
traveling salesman tour of minimum weight. For a c ≥
1, a c-approximation algorithm is an algorithm which
outputs a Hamilton cycle H with w(H) ≤ c · wOPT

9

Algorithm TSP-Approx

Step 1. Find MST T

Step 2. Create walk W “around” T , traversing each
edge twice

Step 3. Set H = W and go around H and iteratively
change it by “shortcuting” at any vertex which is used
the second time. Output H when e(H) = n

Remark. Running time: fast (Kruskal + O(n))

Theorem If w satisfies the triangle inequality, then
TSP-Approx is a 2-approximation algorithm.

Proof. Let Tmin a MST of G. Then w(W) = 2w(Tmin)

By triangle inequality, shortcut decreases the sum of
the weights of H, so w(H) ≤ 2w(Tmin)

Hamilton path within an optimal traveling salesman
tour is a spanning tree, so w(Tmin) ≤ wOPT 2

