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An explicit construction of a perfect matching decomposition

The Exercise

Sheet 8, Exercise 6 Suppose n > 2. Baranyai’s Theorem guarantees ([33"]) can be parti-
tioned into perfect matchings without explicitly describing these matchings. In this exercise
you will give such an explicit description in the case when p = 3n — 1 is a prime number.

(a) Consider the field F,, and denote by F; the set of invertible elements, namely F; =
{1,2,...,p — 1}. Define the map 7 : F; — F, by 7(z) = —(1 + x)z~". Show that  is
injective and 73(x) = x for any z # p — 1.

(b) Add a new element u to F,, and extend 7 to {u,0} injectively so that 7*(z) = x for
all z € F, U {u}. Show that this gives some perfect matching M, in ([3;]).
(c) By considering affine transformations x — axz + b, find another (3"2_ 1) — 1 perfect

matchings in ([33”}) .

(d) Show that these matchings partition ([3;]) into perfect matchings.

The Solution

The construction presented in this exercise is due to Thomas Beth. There are no known
constructions for £ > 4 and as far as I know this is the only construction known for k = 3.

Part (a)

Clearly 7 is well defined. Now if 7(z) = 7(y) then y + zy = x 4+ 2y and hence x = y. So 7w
is injective. Furthermore, for z # p — 1 we have
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and the two values m(z), 7%(x) are well-defined. We further have 7(p — 1) = 0.



Part (b)

We define 7(0) = v and 7(u) =p — 1.

For z # 0, the identity m(z) = x implies z?+z+1 = 0. Multiplying by = and rearranging,
2® = —2?—2 = 1. But p > 5soz # 1. Then the order of z in [F} is 3 and hence by Lagrange’s
theorem, 3 divides p — 1 = 3n — 2, which is not possible. Also, as 7*(z) = z, 7%(x) = x or
7%(z) = w(x) implies 7(y) = y for some y, which we have just shown to be impossible, we
find z, m(x) and 7%(z) are three distinct elements.

Hence 7 has all orbits of size 3, and thus defines a perfect matching M, on vertex set

F, U{u} ~ [3n], with edges represented by the orbits.

Part (c)

We will now define two actions on the 3-element subsets of [F,, U {u}.

Ifa €F,and e CF,U {u} is any 3-set containing points xi, z9, x5, we define a - e as the
set {ax1, axy, axg}. This is well-defined, provided we assume au = u. We furthermore define
a - My as the collection {a -e: e € My}. Then a- M, is also a perfect matching.

If a € F) and e C F, U {u} is any 3-set containing points z1, x2, x5, we define a + e as the
set {a + x1,a + x2,a + x3}. This is well-defined, provided we assume a + u = w. Then if M
is any perfect matching, a + M is also a perfect matching.

Now the group F is cyclic. Fix a generator v and consider the sets M; ; := {v' My+j:
0<i< p%l, 0 < j <p—1}. Then by the above M, ; are all perfect matchings in F, U {u}

and there are @ = (3”2_ 1) of them.

Part (d)

To prove Baranyai’s theorem it is enough to show that any 3-set appears in at most one of
the above matchings. So suppose for contradiction that some 3-set e belongs to two distinct
matchings M; j and My, k > 4. Then e =v'-e;+j = v"- ey +1, for some ey, e € My. Hence
e = vF " eg+ v (1 —75). W.lo.g. we may takei = 0 and j = 0. Consequently e; = vF-ey+1
with 0 < k < 251,

To simplify notation we set a := v* b := [ and assume e; = {x1, 22,73}, €2 = {y1, Y2, Y3},
with z; = a-y; + 0,1 <i < 3. W.lo.g. we assume yo = m(y1), y3 = 72(y1).

Note that we can not have a = 1 and b = 0, for then k£ = 0 and the two matchings are
the same, a contradiction. We also can not have a = —1, for then a? = 1 and hence k = ’%1,
again a contradiction.

Now consider the case when u € e;. We assume y; = u (as all other cases follow by
permuting indices). Then z; = u. We also get yo = p—1,y3 = 0 and 23 = a(p—1)+b, x5 = b.

If 23 = 7%(x1) = 0 then b = 0 and so x5 = p—1 =a(p—1). Then a = 1, a contradiction.

Soxy =7%(z1) =0and b=x3 =7(z;) =p—1. Then (a+1)(p—1) = 0, hence a = —1.
But as we have seen this is not possible.

Consequently we may assume that u ¢ e; and hence p — 1,0, u ¢ e; U es.



By the computation done for (a) we know that y, = —1;;% and y3 = —yl—ﬁrl. We see that
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and therefore
a(y; +y1+1) = yi(z1 — x2) = (g1 + 1) (21 — x3). (3)

First assume x5 = m(21), 23 = 72(21). Then from (3) and using (1)), (2) with y; replaced
by z;, we get
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from which we deduce that 1 = y;. But then x; = y;,1 < i < 3, and furthermore b = 0,a =
1, a contradiction.
Therefore the only possibility is that zo = 7%(x1), 23 = 7(z1). Again from and (1)),
(2)), we obtain
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from which we deduce that y; = —(z1 + 1). But then y; = %, Yy = % and y3 = % We thus
obtain the system of equations
ry = % + b,
T2 = ;3 + b,
r3 = < +b.
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Subtracting cyclically we get
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Consequently,
a® = (—1)z3x573.



We now use the identity zm(x)7*(x) = 1, which is true for any = € F; \ {p — 1}. Then
a® = —1, and hence a® = 1. As a ¢ {1,—1}, the order of a in F} is 3 or 6. Therefore by
Lagrange’s theorem again, 3 divides p — 1 = 3n — 2, a contradiction.

This completes the proof.



