Exercise Sheet 1

Due date: 16:15, 24th October

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 In a red/blue colouring of the edges of K_n , let r_i denote the number of red edges with vertex *i* as an end point. Show that the number of monochromatic triangles is equal to $\binom{n}{3} - \frac{1}{2} \sum_{i=1}^{n} r_i(n-1-r_i)$. Deduce that every red/blue colouring of $E(K_6)$ contains not only one, but at least *two* monochromatic triangles.

Exercise 2 In this exercise you will prove the classic Erdős–Szekeres bound on the Ramsey numbers. Recall that R(s,t) is the minimum integer n for which every red/blue-colouring of the edges of K_n contains a monochromatic K_s in red or a monochromatic K_t in blue.

- (i) Show that R(s, 2) = s and R(2, t) = t.
- (ii) Show that for any $s, t \ge 2$, $R(s, t) \le R(s 1, t) + R(s, t 1)$.
- (iii) Prove that $R(s,t) \leq {\binom{s+t-2}{s-1}}$ for any $s,t \geq 2$. (*Hint.* You might want to try induction on s+t.)
- (iv) (Bonus) Conclude that for the symmetric Ramsey number we have $R(s) = O(\frac{4^s}{\sqrt{s}})$.

Remark. This gives us an improvement by a factor of \sqrt{s} , over what we have proved in the lecture—which pales unfortunately, when compared to the exponential factor gap between the upper and lower bounds we know.

Exercise 3

- (a) Show that $R(3, 4) \le 10$.
- (b) Improve (a) to $R(3,4) \le 9$.
- (c) Show that R(3,4) = 9.

Exercise 4 For the multicolour Ramsey numbers prove that

$$R_r(t_1, t_2, \dots, t_r) \le r^{1 + \sum_{i=1}^r (t_i - 1)}.$$