Exercise Sheet 11

Due date: 16:15, 30th January

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 Show that the skew version of the Bollobás set-pairs inequality is false in the non-uniform setting. More specifically, for each $n \in \mathbb{N}$, find a sequence of sets A_1, \ldots, A_m and B_1, \ldots, B_m such that

(1) $A_i \cap B_i = \emptyset$ for all *i*, and

(2) $A_i \cap B_j \neq \emptyset$ for all i > j, but

$$\sum_{i=1}^m \frac{1}{\binom{|A_i|+|B_i|}{|A_i|}} \ge n+1.$$

Exercise 2 Let \mathbb{F}_p be the finite field of order p, where p is a prime number ¹. Recall that a set of vectors S in the *n*-dimensional vector space \mathbb{F}_p^n is said to be in *general linear position* if every n element subset of S forms a linearly independent set of vectors. Construct a set of max $\{p, n\} + 1$ vectors in \mathbb{F}_p^n which are in general linear position.

Exercise 3 For a graph H let sat(n, H) and wsat(n, H) denote the saturation number and the weak saturation number.

- (1) Prove that $sat(7, C_4) > 7$ and $wsat(7, C_4) \le 7$.
- (2) (Bonus) Prove that $\operatorname{sat}(n, C_4) \leq \lfloor (3n-5)/2 \rfloor$ and $\operatorname{wsat}(n, 4) \leq n$ for all $n \geq 5$.

Remark It is in fact known that $\operatorname{sat}(n, C_4) = \lfloor (3n-5)/2 \rfloor$ and $\operatorname{wsat}(n, C_4) = n$ for all $n \ge 5$, but proving the lower bounds is quite difficult. This shows that the saturation number and the weak saturation number can be very different (and difficult to compute), even for a graph like C_4 .

¹That is, the set of residues of integers modulo p.

Exercise 4 Let \mathcal{F} be a k-uniform set family which is intersection free, i.e., for any three distinct members of A, B, C of \mathcal{F} , we have $A \cap B \not\subseteq C$. Then show that

$$|\mathcal{F}| \le 1 + \binom{k}{\lfloor k/2 \rfloor}$$

Exercise 5 (Bonus)

(1) Prove that the number of k-dimensional vector subspaces of \mathbb{F}_p^n is equal to

$$\frac{(p^n-1)(p^n-p)\cdots(p^n-p^{k-1})}{(p^k-1)(p^k-p)\cdots(p^k-p^{k-1})}$$

- (2) Prove that for any linearly independent set C of n-2 vectors in \mathbb{F}_p^n , there exist exactly p+1 subspaces V of \mathbb{F}_p^n which contain C and have dimension n-1.
- (3) Use (2) to deduce that any set of vectors in \mathbb{F}_p^n in general linear position has cardinality at most p + n 1.

HINTS

Exercise 1: you can do this with a sequence of 2^n pairs of subsets of [n].