Exercise Sheet 12

Due date: 16:15, 6th February

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 Given two natural numbers k and n, the k-cascade representation of n is given by

$$n = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_s}{s},$$

where $a_k > a_{k-1} > \cdots > a_s \ge s \ge 1$. Prove that such a representation of n exists and is unique.

Exercise 2 The **colexicographical order** on k-subsets of \mathbb{N} is defined as A < B if and only if $\max(A \triangle B) \in B$.

- (1) Prove that this gives a total order, and that for any positive integer n the first $\binom{n}{k}$ elements with respect to this order are precisely the k-subsets of $\{1, \ldots, n\}$ (in colexico-graphical order).
- (2) Let *m* be a positive integer and let $m = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_s}{s}$ be its *k*-cascade representation. Prove that the family of the first *m* elements of $\binom{\mathbb{N}}{k}$ with respect to the colexicographical order have a shadow of size $\binom{a_k}{k-1} + \binom{a_{k-1}}{k-2} + \dots + \binom{a_s}{s-1}$.

Exercise 3 Given a family $\mathcal{F} \subseteq {\binom{[n]}{k}}$, define its ℓ -shadow to be

$$\partial_{\ell}(\mathcal{F}) = \{ E \in {[n] \choose \ell} : E \subset F \text{ for some } F \in \mathcal{F} \}.$$

- (1) For $0 \leq \ell < k$ and $m = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_s}{s}$ for $a_k > a_{k-1} > \dots > a_s \geq s \geq 1$, determine the smallest possible size of the ℓ -shadow of a set family $\mathcal{F} \subseteq \binom{[n]}{k}$ of size m.
- (2) Deduce the Erdős-Ko-Rado theorem: if $n \ge 2k$, then the largest intersecting family in $\binom{[n]}{k}$ has size $\binom{n-1}{k-1}$.

Exercise 4 In this exercise we will prove a slightly stronger version of the 2-dimensional case of Sperner's Lemma.

Let S be a triangle in \mathbb{R}^2 , and suppose its vertices are coloured 1, 2 and 3 in clockwise order. Now consider any subdivision of S with a legal Sperner colouring of the new vertices. For each subtriangle in the subdivision, we will assign a label to each of its three edges. Processing the colours of the vertices in clockwise order, give an edge label +1 if the colours of its endpoints are (1, 2), (2, 3) or (3, 1). Give it label -1 if the colours are (2, 1), (3, 2) or (1, 3). Give it label 0 if the colours are (1, 1), (2, 2) or (3, 3). Note that as an internal edge of the subdivision is contained in two subtriangles, it will receive two labels: one for each subtriangle it is in.

By considering the sums of all of the labels, show that the subdivision does not just contain a rainbow triangle, but it contains a rainbow triangle with vertices of colour 1, 2 and 3 in clockwise order.

HINTS

Exercise 3: Find a way to convert disjoint sets into comparable sets, giving a link between intersecting families and shadows of set families.