Exercise Sheet 13

Due date: 16:15, 13th February

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 In this exercise we will prove that the only extremal set families with respect to Sperner's theorem ¹ are the "mid-levels", using Kruskal-Katona theorem.

While Kruskal-Katona gives a pretty sharp bound on the shadow size, in practice it is usually better to use the follow weaker, but computationally friendlier, version due to Lovász. For $x \in \mathbb{R}$, and $k \in \mathbb{N}$, define

$$\binom{x}{k} = \frac{x(x-1)\cdots(x-k+1)}{k!},$$

for all $x \ge k$. Since this is an increasing (continuous) function in this domain, we see that for every integer *m* there exists a unique *x* for which $m = \binom{x}{k}$.

Theorem 1 (Lovász). Let \mathcal{F} be a k-uniform set-family of size $m = \binom{x}{k}$, for some real number $x \ge k$. Then

$$|\partial F| \ge \binom{x}{k-1}.$$

Let n = 2k + 1 be an odd integer, and let \mathcal{F} be an antichain in $2^{[n]}$ of largest possible size. Prove that \mathcal{F} is either equal to $\binom{[n]}{k}$ or $\binom{[n]}{k+1}$ (and so it has to consist of all elements of one of the mid-level layers).

Exercise 2 Let B^d denote the closed unit ball in \mathbb{R}^d ; that is,

$$B^{d} = \left\{ \vec{x} \in \mathbb{R}^{d} : \sum_{i=1}^{d} x_{i}^{2} \le 1 \right\}.$$

Let $f: B^d \to B^d$ be a continuous function. Brouwer's Fixed Point Theorem states that f must have a *fixed point*; that is, there is some $\vec{x} \in B^d$ such that $f(\vec{x}) = \vec{x}$.

¹not the Sperner's lemma!

Since B^d can be continuously and reversibly deformed into the standard *d*-simplex Δ^d , where

$$\Delta^d = \left\{ \vec{x} \in \mathbb{R}^{d+1} : \sum_{i=1}^{d+1} x_i = 1, \text{ and } x_i \ge 0 \text{ for all } i \right\},$$

it is equivalent to show that any continuous map $f : \Delta^d \to \Delta^d$ has a fixed point. Use Sperner's Lemma to prove this version of Brouwer's Fixed Point Theorem.

Exercise 3 Let G be an (2k)-partite graph, with each part having n vertices, of maximum degree Δ .

- (i) Show that if $n > 2\Delta \frac{\Delta}{k}$, then G must have an independent transversal.
- (ii) Show that this is best possible: construct a (2k)-partite graph with parts of size $2\Delta \lceil \frac{\Delta}{k} \rceil$ and maximum degree Δ that has no independent transversals.

Exercise 4 We define the Kneser graph KG(n,k) to have vertices $V = {\binom{[n]}{k}}$, with edges $F_1 \sim F_2$ if and only if $F_1 \cap F_2 = \emptyset$. Observe that KG(5,2) is the well-known Petersen graph. Given a graph G, let (G) be the set of its independent sets. The fractional chromatic number $\chi_f(G)$ is defined as the minimum $r \in \mathbb{R}$ for which one may assign non-negative real numbers $x_I \geq 0$ to every independent set $I \in (G)$ such that $\sum_{I \in (G)} x_I = r$, subject to the constraint that for every vertex $v \in V(G)$, $\sum_{I \ni v} x_I \geq 1$.

- (ii) Show that for any N-vertex graph G, $\frac{N}{\alpha(G)} \leq \chi_f(G) \leq \chi(G)$.
- (iii) When $n \ge 2k$, show that $\chi_f(KG(n,k)) = \frac{n}{k}$.

HINTS

Exercise 1: Use the fact that the shadow of the intersection of the antichain with the (k + 1)st-level is disjoint from the intersection of the antichain with the k-th level.

Exercise 2: Consider a subdivision with simplices of smaller diameter. Colour each vertex x of the subdivision based on which coordinate of x is larger than in its image under f. Apply Sperner's Lemma, and take a limit.