Exercise Sheet 6

Due date: 16:15, 5th December

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 Let G be a graph on n vertices which has no cycles of length less than g.

- (a) If the degree of each vertex in G is at least d, then prove that the number of vertices in G is $\Omega(d^k)$ where $k = \lfloor \frac{g-1}{2} \rfloor$.
- (b) Prove that the number of edges in G is at most $O(n^{1+1/k})$ where $k = \lfloor \frac{g-1}{2} \rfloor$.

Exercise 2 Suppose G is a graph with $\chi(G) = k$, and let $V = V_1 \cup V_2 \cup \ldots \cup V_k$ be a proper k-colouring of G (where each vertex in V_i receives colour i).

- (a) Show that for every $1 \le i \le k$, there is a vertex $v_i \in V_i$ such that v_i has a neighbour in V_j for every $j \ne i$.
- (b) Deduce that G has at least $\binom{k}{2}$ edges.
- (c) If G is also triangle-free, improve this lower bound to $e(G) \ge \frac{3}{4}k^2 k$.

Remark: Part (b) shows that the smallest number of edges in a non (k-1)-colorable graph is $\binom{k}{2}$. Compare this to the Property B of hypergraphs.

Exercise 3 Let G = (V, E) be a graph, and let $A, B \subset V$ be two disjoint non-empty sets of vertices, of sizes a and b respectively. Let $X \subset A$ be a uniformly random set of k vertices, where $1 \leq k \leq a$ is fixed, and let $Y \subset B$ be an independent uniformly random set of ℓ vertices, for some fixed $1 \leq \ell \leq b$.

- (a) Show that $\mathbb{E}[d(X,Y)] = d(A,B)$; that is, the average density over subsets is the density of the pair (A, B) itself.
- (b) Deduce that, in order to check whether or not the pair (A, B) is ε -regular, it suffices to check if $|d(X, Y) - d(A, B)| \le \varepsilon$ for every pair (X, Y) with $X \subset A$ of size precisely $\lceil \varepsilon a \rceil$ and $Y \subset B$ of size precisely $\lceil \varepsilon b \rceil$.

Exercise 4 In this exercise you will show that a random bipartite graph is ε -regular with high probability, thus validating our intuitive understanding that ε -regular pairs are "random looking".

Fix some $\varepsilon > 0$ and some probability $p \in [0, 1]$. Let $A = \{a_1, a_2, \ldots, a_n\}$ and $B = \{b_1, b_2, \ldots, b_n\}$ be the two parts of the random bipartite graph G(n, n, p), i.e. for all $1 \leq i, j \leq n$, the edge $\{a_i, b_j\}$ belongs to our random graph G with probability p, independently of all other edges. Show that

$$\mathbb{P}\left((A,B) \text{ is } \varepsilon\text{-regular}\right) \to 1 \quad \text{as} \quad n \to \infty.$$

You may use the Chernoff bound, which in particular implies that if a random variable $X \sim Bin(N, p)$ is binomially distributed with parameters

$$\mathbb{P}\left(|X - Np| \ge t\right) \le 2e^{-2t^2/N}.$$

HINTS

Exercise 1(b): .eerged egareva egral fo shparg ni eerged muminim hgih fo hpargbus afo ecnetsixe ehttuoba krowemoh suoiverp eht ni devorp uoy ammel eht esU