RECAP: Triangle-free subgraphs

Theorem. (Mantel, 1907) The maximum nu2mber of
edges in an n-vertex triangle-free graph is | 7-|.

Proof.
() There is a triangle-free graph with L”TQJ edges.

(i1) If G is a triangle-free graph, then e(G) < L”TQJ.

Proof of (i7) is with extremality. (Look at the neigh-
borhood of a vertex of maximum degree.)



Complete k-partite graphs

A graph G is r-partite (or r-colorable) if there is a par-
tition V7 U --- UV, = V(G) of the vertex set, such
that for every edge its endpoints are in different parts
of the partition.

GG is a complete r-partite graph if there is a partition
Viu---uUV, = V(G) of the vertex set, such that
ww € FE(G) iff w and v are in different parts of the
partition. If |V;| = n;, then G is denoted by Ky,.... n,.

The Turan graph 75, » is the complete r-partite graph
on n vertices whose partite sets differ in size by at
most 1. (All partite sets have size [n/r] or [n/r].)

Lemma Among r-colorable graphs the Turan graph
is the unique graph, which has the most number of

edges.

Proof. Local change. O



Turan’s Theorem

The Turan number ex(n, H) of a graph H is the lar-
gest integer m such that there exists an H-free* graph
on n vertices with m edges.

Example: Mantel’s Theorem states ex(n, K3) = {”TQJ :

Theorem. (Turan, 1941)

1 n
1) (2)4+00m).

r —

ca(n, Kr) = e(Tyy-1) = (1 -

Proof. Prove by induction on r that

there is an (r — 1)-partite graph H with

Then apply the Lemma to finish the proof. O

*Here H-free means that there is no subgraph isomorphic to H
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Turan-type problems

Question. (Turan, 1941) What happens if instead of
K4, which is the graph of the tetrahedron, we forbid
the graph of some other platonic polyhedra? How ma-
ny edges can a graph without an octahedron (or cube,
or dodecahedron or icosahedron) have?

‘ N

N

The platonic solids



Erdos-Simonovits-Stone Theorem

Theorem. (Erdds-Stone, 1946) For arbitrary fixed in-
tegersr >2andt > 1

ca(n o) = (1= =) (0) + o(n)

Corollary. (Erdds-Simonovits, 1966) For any graph
H,

1 n
ex(n, H) = (1 ~ () = 1) (2> + o(n?).

Corollaries of the Corollary.

2
n
ex(n,octahedron) = 7 + o(n?)
TL2 2
ex(n,dodecahedron) = 7 + o(n*®)
?7,2 2
ex(n,icosahedron) = 5 + o(n*®)

ex(n,cube) = o(n?)



Proof of the Erdds-Simonovits Corollary_

Theorem. (Erdds-Stone, 1946) For arbitrary fixed in-
tegersr >2andt > 1

cx(n, Trip) = (1= —=) (3) + 0(n?),

Corollary. (Erdds-Simonovits, 1966) For any graph
H,

1 n
ex(n, H) = <1 ~ (i) = 1) (2) + o(n?).

Proof of the Corollary. Letr = x(H).
® X(Tn,’r—l) < x(H), so0 G(Tn,r—l) ex(n, H).

o Trar 2 H,s0ex(n,Trar) > ex(n, H), where o
is a constant depending on H; say a = a(H).



The number of edges in a C4-free graph_
Theorem (Erdés, 1938) ex(n,Cy) = O(n3/2)
Proof. Let G be a C,-free graph on n vertices.

C = C(G) := number of K7 5 (“cherries”) in G.
Doublecount C.

Counting by the midpoint: Every vertex v is the mid-
point of exactly (d(z’“)) cherries. Hence

c=Y (dg")).

veV

Counting by the endpoints: Every pair {u, w} of verti-
ces form the endpoints of at most one cherry. (Other-
wise there is a C4, C G.) Hence

Cgl-(g).
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Proof cont’'d

Combine and apply Jensen’s inequality
(Note that x — (g) is a convex function)

d(v) d(G)
0202 % (9) 20 ()
d(G) = = Y ,ey d(v) is the average degree of G.

n—1 5 (J(G)) . (d(G) — 1)2
2 g, g,

Hence vn — 1 + 1 > d(G).

Theorem (E. Klein, 1938) ex(n,Cy) = ©(n3/2)
Proof. Homework.

Theorem (Kdvari-Sés-Turan, 1954) Fors >t > 1

1
ex(n, Kis) < Csnz_?

Proof. Homework.
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Open problems and Conjectures

Known results.

Q(n?) < ex(n,Q3) < O(n%°%)
Q(n%8) < ex(n,Cg) < O(n®*)
Qn?7) < ex(n, ) < O(n'/7)
Conjectures.
o1
ex(n, K ;) = @(n m'”{t’5}>truefort=2,3and32t
ort>4ands > (t—1)!
14+
ex(n,Crr) = @(n k) true for k = 2,3 and 5

ex(n,()3) = O (n )
If H is a d-degenerate bipartite graph, then

ex(n,H) = O (nz_%) .
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