
RECAP: Triangle-free subgraphs

Theorem. (Mantel, 1907) The maximum number of
edges in an n-vertex triangle-free graph is bn

2

4 c.

Proof.

(i) There is a triangle-free graph with bn
2

4 c edges.

(ii) If G is a triangle-free graph, then e(G) ≤ bn
2

4 c.

Proof of (ii) is with extremality. (Look at the neigh-
borhood of a vertex of maximum degree.)
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Complete k-partite graphs

A graph G is r-partite (or r-colorable) if there is a par-
tition V1 ∪ · · · ∪ Vr = V (G) of the vertex set, such
that for every edge its endpoints are in different parts
of the partition.

G is a complete r-partite graph if there is a partition
V1 ∪ · · · ∪ Vr = V (G) of the vertex set, such that
uv ∈ E(G) iff u and v are in different parts of the
partition. If |Vi| = ni, then G is denoted by Kn1,...,nr.

The Turán graph Tn,r is the complete r-partite graph
on n vertices whose partite sets differ in size by at
most 1. (All partite sets have size dn/re or bn/rc.)

Lemma Among r-colorable graphs the Turán graph
is the unique graph, which has the most number of
edges.

Proof. Local change. 2
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Turán’s Theorem

The Turán number ex(n,H) of a graph H is the lar-
gest integerm such that there exists anH-free∗ graph
on n vertices with m edges.

Example: Mantel’s Theorem states ex(n,K3) =
⌊
n2

4

⌋
.

Theorem. (Turán, 1941)

ex(n,Kr) = e(Tn,r−1) =
(

1−
1

r − 1

) (n
2

)
+O(n).

Proof. Prove by induction on r that

G 6⊇ Kr =⇒ there is an (r − 1)-partite graph H with
V (H) = V (G) and e(H) ≥ e(G).

Then apply the Lemma to finish the proof. 2

∗Here H-free means that there is no subgraph isomorphic to H

6



Turán-type problems

Question. (Turán, 1941) What happens if instead of
K4, which is the graph of the tetrahedron, we forbid
the graph of some other platonic polyhedra? How ma-
ny edges can a graph without an octahedron (or cube,
or dodecahedron or icosahedron) have?

The platonic solids
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Erdős-Simonovits-Stone Theorem

Theorem. (Erdős-Stone, 1946) For arbitrary fixed in-
tegers r ≥ 2 and t ≥ 1

ex(n, Trt,r) =
(

1−
1

r − 1

) (n
2

)
+ o(n2).

Corollary. (Erdős-Simonovits, 1966) For any graph
H,

ex(n,H) =

(
1−

1

χ(H)− 1

)(n
2

)
+ o(n2).

Corollaries of the Corollary.

ex(n,octahedron) =
n2

4
+ o(n2)

ex(n,dodecahedron) =
n2

4
+ o(n2)

ex(n,icosahedron) =
n2

3
+ o(n2)

ex(n,cube) = o(n2)
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Proof of the Erdős-Simonovits Corollary

Theorem. (Erdős-Stone, 1946) For arbitrary fixed in-
tegers r ≥ 2 and t ≥ 1

ex(n, Trt,r) =
(

1−
1

r − 1

) (n
2

)
+ o(n2).

Corollary. (Erdős-Simonovits, 1966) For any graph
H,

ex(n,H) =

(
1−

1

χ(H)− 1

)(n
2

)
+ o(n2).

Proof of the Corollary. Let r = χ(H).

• χ(Tn,r−1) < χ(H), so e(Tn,r−1)≤ ex(n,H).

• Trα,r ⊇ H, so ex(n, Trα,r)≥ ex(n,H), where α
is a constant depending on H; say α = α(H).

2
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The number of edges in a C4-free graph

Theorem (Erdős, 1938) ex(n,C4) = O(n3/2)

Proof. Let G be a C4-free graph on n vertices.

C = C(G) := number of K1,2 (“cherries”) in G.
Doublecount C.

Counting by the midpoint: Every vertex v is the mid-
point of exactly

(
d(v)

2

)
cherries. Hence

C =
∑
v∈V

(d(v)

2

)
.

Counting by the endpoints: Every pair {u,w} of verti-
ces form the endpoints of at most one cherry. (Other-
wise there is a C4 ⊆ G.) Hence

C ≤ 1 ·
(n
2

)
.
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Proof cont’d

Combine and apply Jensen’s inequality
(Note that x→

(
x
2

)
is a convex function)

(n
2

)
≥ C ≥

∑
v∈V

(d(v)

2

)
≥ n ·

(d̄(G)

2

)
.

d̄(G) = 1
n

∑
v∈V d(v) is the average degree of G.

n− 1

2
≥

(d̄(G)

2

)
≥

(d̄(G)− 1)2

2

Hence
√
n− 1 + 1 ≥ d̄(G). 2

Theorem (E. Klein, 1938) ex(n,C4) = Θ(n3/2)

Proof. Homework.

Theorem (Kővári-Sós-Turán, 1954) For s ≥ t ≥ 1

ex(n,Kt,s) ≤ csn2−1
t

Proof. Homework.
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Open problems and Conjectures

Known results.

Ω(n3/2) ≤ ex(n,Q3) ≤ O(n8/5)

Ω(n9/8) ≤ ex(n,C8) ≤ O(n5/4)

Ω(n5/3) ≤ ex(n,K4,4) ≤ O(n7/4)

Conjectures.

ex(n,Kt,s) = Θ

(
n

2− 1
min{t,s}

)
true for t = 2,3 and s ≥ t
or t ≥ 4 and s > (t− 1)!

ex(n,C2k) = Θ
(
n1+1

k

)
true for k = 2,3 and 5

ex(n,Q3) = Θ
(
n

8
5

)
If H is a d-degenerate bipartite graph, then

ex(n,H) = O

(
n2−1

d

)
.
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