RECAP: Triangle-free subgraphs_

Theorem. (Mantel, 1907) The maximum number of edges in an n-vertex triangle-free graph is $\lfloor \frac{n^2}{4} \rfloor$.

Proof.

- (i) There is a triangle-free graph with $\lfloor \frac{n^2}{4} \rfloor$ edges.
- (ii) If G is a triangle-free graph, then $e(G) \leq \lfloor \frac{n^2}{4} \rfloor$.

Proof of (ii) is with extremality. (Look at the neighborhood of a vertex of maximum degree.)

Complete k-partite graphs

A graph G is r-partite (or r-colorable) if there is a partition $V_1 \cup \cdots \cup V_r = V(G)$ of the vertex set, such that for every edge its endpoints are in *different* parts of the partition.

G is a complete r-partite graph if there is a partition $V_1 \cup \cdots \cup V_r = V(G)$ of the vertex set, such that $uv \in E(G)$ iff u and v are in *different* parts of the partition. If $|V_i| = n_i$, then G is denoted by K_{n_1,\ldots,n_r} .

The Turán graph $T_{n,r}$ is the complete r-partite graph on n vertices whose partite sets differ in size by at most 1. (All partite sets have size $\lceil n/r \rceil$ or $\lceil n/r \rceil$.)

Lemma Among r-colorable graphs the Turán graph is the *unique* graph, which has the most number of edges.

Proof. Local change.

Turán's Theorem

The Turán number ex(n, H) of a graph H is the largest integer m such that there exists an H-free* graph on n vertices with m edges.

Example: Mantel's Theorem states $ex(n, K_3) = \left\lfloor \frac{n^2}{4} \right\rfloor$.

Theorem. (Turán, 1941)

$$ex(n, K_r) = e(T_{n,r-1}) = \left(1 - \frac{1}{r-1}\right) {n \choose 2} + O(n).$$

Proof. Prove by induction on r that

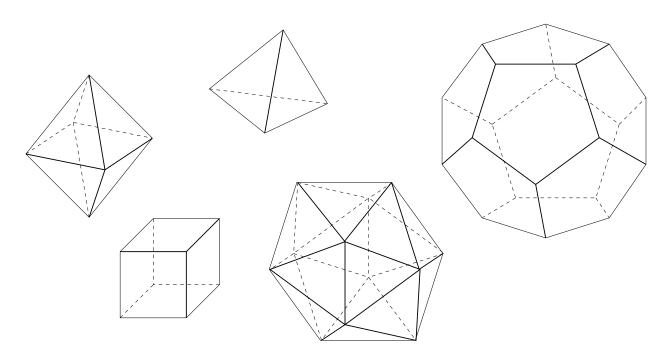
$$G \not\supseteq K_r \Longrightarrow ext{there is an } (r-1) ext{-partite graph } H ext{ with } V(H) = V(G) ext{ and } e(H) \ge e(G).$$

Then apply the Lemma to finish the proof.

^{*}Here H-free means that there is no subgraph isomorphic to H

Turán-type problems

Question. (Turán, 1941) What happens if instead of K_4 , which is the graph of the tetrahedron, we forbid the graph of some other platonic polyhedra? How many edges can a graph without an octahedron (or cube, or dodecahedron or icosahedron) have?



The platonic solids

Erdős-Simonovits-Stone Theorem

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \ge 2$ and $t \ge 1$

$$ex(n, T_{rt,r}) = \left(1 - \frac{1}{r-1}\right) {n \choose 2} + o(n^2).$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) {n \choose 2} + o(n^2).$$

Corollaries of the Corollary.

$$ex(n, \text{octahedron}) = \frac{n^2}{4} + o(n^2)$$

$$ex(n, \text{dodecahedron}) = \frac{n^2}{4} + o(n^2)$$

$$ex(n, \text{icosahedron}) = \frac{n^2}{3} + o(n^2)$$

$$ex(n, \text{cube}) = o(n^2)$$

Proof of the Erdős-Simonovits Corollary____

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \ge 2$ and $t \ge 1$

$$ex(n, T_{rt,r}) = \left(1 - \frac{1}{r-1}\right) {n \choose 2} + o(n^2).$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) {n \choose 2} + o(n^2).$$

Proof of the Corollary. Let $r = \chi(H)$.

- $\chi(T_{n,r-1}) < \chi(H)$, so $e(T_{n,r-1}) \le ex(n,H)$.
- $T_{r\alpha,r} \supseteq H$, so $ex(n,T_{r\alpha,r}) \ge ex(n,H)$, where α is a constant depending on H; say $\alpha = \alpha(H)$.

The number of edges in a C_4 -free graph____

Theorem (Erdős, 1938) $ex(n, C_4) = O(n^{3/2})$

Proof. Let G be a C_4 -free graph on n vertices.

 $C = C(G) := \text{number of } K_{1,2} \text{ ("cherries") in } G.$ Doublecount C.

Counting by the midpoint: Every vertex v is the midpoint of exactly $\binom{d(v)}{2}$ cherries. Hence

$$C = \sum_{v \in V} {d(v) \choose 2}.$$

Counting by the endpoints: Every pair $\{u, w\}$ of vertices form the endpoints of at most one cherry. (Otherwise there is a $C_4 \subseteq G$.) Hence

$$C \leq 1 \cdot {n \choose 2}.$$

Proof cont'd

Combine and apply Jensen's inequality (Note that $x \to {x \choose 2}$ is a convex function)

$$\binom{n}{2} \ge C \ge \sum_{v \in V} \binom{d(v)}{2} \ge n \cdot \binom{\bar{d}(G)}{2}.$$

 $\overline{d}(G) = \frac{1}{n} \sum_{v \in V} d(v)$ is the average degree of G.

$$\frac{n-1}{2} \geq {\bar{d}(G) \choose 2} \geq \frac{(\bar{d}(G)-1)^2}{2}$$

Hence
$$\sqrt{n-1}+1\geq \bar{d}(G)$$
.

Theorem (E. Klein, 1938) $ex(n, C_4) = \Theta(n^{3/2})$ *Proof.* Homework.

Theorem (Kővári-Sós-Turán, 1954) For $s \ge t \ge 1$

$$ex(n, K_{t,s}) \le c_s n^{2 - \frac{1}{t}}$$

Proof. Homework.

Open problems and Conjectures____

Known results.

$$\Omega(n^{3/2}) \le ex(n, Q_3) \le O(n^{8/5})$$

 $\Omega(n^{9/8}) \le ex(n, C_8) \le O(n^{5/4})$
 $\Omega(n^{5/3}) \le ex(n, K_{4,4}) \le O(n^{7/4})$

Conjectures.

$$ex(n, K_{t,s}) = \Theta\left(n^{2-\frac{1}{\min\{t,s\}}}\right)$$
 true for $t = 2, 3$ and $s \ge t$ or $t \ge 4$ and $s > (t-1)!$ $ex(n, C_{2k}) = \Theta\left(n^{1+\frac{1}{k}}\right)$ true for $k = 2, 3$ and 5 $ex(n, Q_3) = \Theta\left(n^{\frac{8}{5}}\right)$

If H is a d-degenerate bipartite graph, then

$$ex(n,H) = O\left(n^{2-\frac{1}{d}}\right).$$