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0.1 Intersection restrictions

0.1.1 When all intersections have the same size

In the Erdős-Ko-Rado theorem, both in its uniform and its not-necessarily-uniform versions, we
forbid empty pairwise intersections. In other words the set of allowed sizes for pairwise intersections
is {1, 2, . . . , n− 1}. What if we restrict us more and allow only a single intersection size? That is,
let λ ∈ N be an integer and F ⊆ 2[n] such that |F1 ∩ F2| = λ for every F1, F2 ∈ F , F1 6= F2. How
large can then F be?

We will tackle this problem in a bit, but we first collect ideas by considering a modular variant
(with a story [?]).

Eventown vs. Oddtown.

In a little town called Eventown the 32 citizens love to organize various clubs. But they have to
follow the strict traditional Eventown-rules of which there are two:

E1 Every club has to have an even number of members.

E2 Every pair of clubs has to have an even number of members in common.

The city council at some point is facing an administrative nightmare due to the number of clubs
getting out of control. Indeed, if the citizens for example, were to pair themselves up and would
join or not join clubs only together with their pairs, then the system of all 216 = 65536 such
possibilities would create a feasible club system according to the above Eventown-rules. The
mayor wants to cut down the number of clubs and considers changing the century old rules whose
motivation is anyway lost in the obscurity of old times. After consultation with the wise, they
consider the following slight modification of the Eventown-rules.

O1 Every club has to have an odd number of members.

O2 Every pair of clubs has to have an even number of members in common.

The difference is in only one word, the conditions E2 and O2 are the same. How many clubs
could there be now? Let us first take a look at some construction ideas, with the set of citizens
being denoted by [n].

1) Taking the n singletons creates n clubs of size 1 each with all pairwise intersection 0.

2) When n is even, one could take the complement of singletons. This creates an (n−1)-uniform
family with all pairwise intersections having size n− 2.

3) Again for n even, we could consider the so-called two-star construction. Let Fi = {i, n−1, n}
for 1 ≤ i ≤ n − 2, Fn−1 = {1, 2, ..., n − 2, n − 1}, and Fn = {1, 2, ..., n − 2, n}. This system
is not anymore uniform, but the possible set sizes are 3 and n − 1, both odd and for the
pairwise intersections we have |Fi ∩ Fj | ∈ {2, n− 2} for i 6= j.

All these construction have n sets and there are in fact many more such constructions. The next
theorem shows that one cannot do better.
Theorem 0.1.1 (Oddtown Theorem, Berlekamp, 1969). Let F ⊆ 2[n] be a set family satisfying
both O1 and O2. Then |F| ≤ n.

This theorem is pretty significant for the mayor of Eventown. With changing just a single word
in the rules, the number of possible clubs is reduced from exponential to linear. The council votes
to change the name of the town to Oddtown and they live happily ever after.
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Before the actual proof of the Oddtown Theorem we make a few general comments in order to
motivate and introduce the general method that will be of use in this chapter.

In a typical extremal combinatorial problem, the greater the number of extremal families1, the
less likely that a purely combinatorial argument will lead to a solution, since a proof eventually
must consider all extremal structures, and be tight for each of them in each of the proof steps. If
these families are combinatorially very different, this might necessarily lead to an unmanageable
number of combinatorial case distinctions.

For some of these problems the stars are aligned and the difficulties posed by multiple extremal
examples can be mitigated by realizing that the combinatorial problem, or rather its extremal
structures, hides the features and concepts of another mathematical discipline in the background.
In such cases, the simplest, or most efficient descriptions of extremal structures are not necessarily
combinatorial, but might have to be formulated in another language, which could be algebraic,
probabilistic, or, even topological. Solutions of this sort, connecting different branches of mathe-
matics, are considered gems: they are rare and beautiful.

The Oddtown Theorem is one of those situations, where the the extremal families are far from
being unique. In fact one can prove that their number is super-exponential [?][Exercise 1.1.14].
For the (easy) proof of Theorem 0.1.1 one only has to realize that the right language of the
problem is the one of linear algebra. And then even though the number of extremal set-systems
is superexponential and the feasibility of their combinatorial characterization is questionable at
best, they have a very simple linear algebraic description as the orthonormal bases in Fn2 .

The connection between combinatorics and algebra is provided through the characteristic vector
vF ∈ {0, 1}n of sets F ⊆ [n], where (vF )i = 1 if and only if i ∈ F .

The key realization relevant to families with pairwise intersection restrictions is that the size of
the intersection of two sets is equal to the standard inner product of the two characteristic vectors:

|A ∩B| =
n∑
i=1

(vA)i(vB)i =: vA · vB .

Indeed, when calculating a term (vA)i(vB)i of the sum, we have a 1 if and only if i ∈ A ∩B.

This connection will allow us to translate the combinatorial condition we have on a family into
linear algebra and use this information to derive the linear independence of the characteristic
vector. This in turns makes the dimension of the space an upper bound on their number.

The simple linear algebra fact that the size of a linearly independent set of vectors is at most
the dimension of the ambient vector space is called the dimension bound. It is the simplest
manifestation of the Linear Algebra method.

Proof of the Oddtown Theorem. Let F = {Ci : 1 ≤ i ≤ m}. To each set Ci we associate its
characteristic vector vi ∈ {0, 1}n. From rules O1 and O2, using vi · vj = |Ci ∩ Cj |, we infer that
vi · vi is odd for every i ∈ [n] and vi · vj is even for every i 6= j.

We would like to claim the linear independence of the vectors v1, . . . ,vm, for which should name
a field to work over. Considering our conditions on the pairwise dot products, it does not come
as a great shock that we choose to show linear independence over the two-element field F2.

Suppose we have a linear combination
m∑
i=1

αivi = 0, with αi ∈ F2. For every j ∈ [m], we take the

1In an extremal combinatorial problem an extremal family is one with the largest (smallest) possible number of
edges among those with the required property. In our problem these are the set families of size n that satisfy both
O1 and O2.
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dot product of it with vj and obtain

0 = 0 · vj =

(
m∑
i=1

αivi

)
· vj =

m∑
i=1

αi (vi · vj) = αj (vj · vj) = αj .

Here we used that all but one of the dot products are zero over F2. This implies that αj = 0 for
every j, consequently the vectors are indeed linear independent. Hence, their number cannot be
more than the dimension of the space and we get m ≤ dimFn2 = n.

Fisher’s Inequality

Let us return to our original problem, where we restricted the size of every pairwise intersection
to a unique non-zero integer λ. It turns out that the same upper bound holds here as well.
Theorem 0.1.2 (Non-uniform Fisher Inequality). Let n ∈ N and suppose 1 ≤ λ ≤ n. If F ⊆ 2[n]

satisfies |F1 ∩ F2| = λ for every F1, F2 ∈ F , F1 6= F2, then |F| ≤ n.

Note that if λ = 0, then the sets Fi must be pairwise disjoint and hence we can have at most n+ 1
such sets (including the ∅).

Fischer’s Inequality originates from statistics/experiment design, where the problem is how to
divide test subject between treatments fairly. There are several other versions of the inequality,
but this one is more general.
Constructions: for λ = 1 we can take near pencils (see Figure 1) and (nondegenerate) projective
planes. The case λ = 1 is the De Bruijn-Erdős theorem. For λ = n−2 we can take the complements
of singletons.
It is an open problem to classify all cases of equality. Can we have equality for all λ?

Figure 1: A near pencil, a.k.a., degenerate projective plane

In the proof we plan to use the same idea we developed for the Oddtown Theorem: we show that
the characteristic vectors vF of a family F from the theorem is an independent set of vectors. We
have liberty in choosing the field we want work over, since 0, 1-vectors make sense over any field.
The right choice here will be a field with zero characteristic, say R or Q.

In the Oddtown Theorem we inferred linear independence directly by considering a linear combi-
nation equl to 0 and showing it is trivial. An alternative view of linear independence is through
the Gram-matrix M(V (F)) of the characteriztis vectors.
Definition 0.1.3. The Gram-matrix M(V ) of a set of vectors V = {v1, . . . ,vm} ⊆ Fn, over some
field F, is the |V | × |V |-matrix with entries

mi,j = vi · vj .

Note that the Gram-matrix is equal to AAT , where A is the m × n-matrix whose ith row is vi.
Therefore rk(M) ≤ rk(A) ≤ m.2 So if the Gram matrix is non-singular over any field then the
vectors are linear independent over that field.
Proposition 0.1.4. If rk(M) = m over some field F then m ≤ n.

2For any two matrices B ∈ Fk×` and C ∈ F`×m we have that rk(BC) ≤
min{rk(B), rk(C)}, since the column space of BC is contained in the column space of C (the dimension of which
is rk(C) and the row space of BC is contained in the row space of C (the dimension of which is rk(C)).
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The Gram matrix as a real matrix is positive semidefinite. Indeed, for every x ∈ Fm we have

xMxT = xAATxT = (xA)(xA)T = ||xA||2 ≥ 0.

Considering the Gram matrix as a real matrix and checking whether it is positive definite gives
an alternative way to check whether the vectors are linear independent.
Proposition 0.1.5. A set V ⊆ Rn of real vectors is linearly independent if and only if their
Gram-matrix M = M(V ) is positive definite.

Proof. The vector set V is linearly independent if and only if for every x ∈ Fm \ {0}, the linear
combination xA of the rows of A is non-zero. This happens if and only if xMxT = ||xA||2 > 0 for
every x ∈ Fm \ {0}, that is if M is positive definite.

Proof. Let F = {F1, ..., Fm} be a family, such that |Fi ∩ Fj | = λ for every i 6= j.

Case 1. There is set Fi ∈ F of size λ = |Fi|. Then, |Fi ∩ Fj | = λ implies that Fi ⊆ Fj for every
j. Since Fj ∩ F` ⊇ Fi is also of size λ, the sets {Fj \ Fi}mj=1 must be pairwise disjoint and are
contained in [n] \ Fi. Hence m ≤ n− λ+ 1 ≤ n.

Case 2. We have |Fi| > λ for every i. Let us introduce the positive integers γi = |Fi| −λ > 0. Let
vi be the characteristic vector of Fi for i ∈ [m]. We claim that this set of m vectors are linearly
independent in Rn. Indeed, in this case the Gram matrix is positive definite, since

xMxT =
∑
i,j

xixjmij =
∑
i,j

xixjλ+

m∑
i=1

x2i γi =

(
m∑
i=1

xi
√
λ

)2

+

m∑
i=1

x2i γi > 0

for every x ∈ Fm \ {0}. Therefore the vectors of V (F) are linearly independent, so their number
is not more than the dimesnion of the space, which is n.

Remark 0.1.6. Note then when talking about linear independence, one has to consider the field
behind the ambient vector space. Vectors that independent over R might be dependent over F2 (the
converse however is not possible!).

0.1.2 Multiple permissable intersection sizes

Restricting the number of possible intersections

Problem/Result Set size Intersection size Bound on family size Total # of sets
Intersecting any 6= 0 2n−1 2n

Erdős-Ko-Rado k (≤ n/2) 6= 0
(
n−1
k−1
) (

n
k

)
Eventown 0 (mod 2) 0 (mod 2) ≥ 2bn/2c 2n−1

Oddtown 1 (mod 2) 0 (mod 2) n 2n−1

Fisher’s Ineq. any = λ (1 ≤ λ ≤ n) n 2n

Definition 0.1.7. Let L be a set of non-negative integers. The family F is L-intersecting if

|F1 ∩ F2| ∈ L ∀ F1, F2 ∈ F , F1 6= F2.

The family F is (mod p)-L-intersecting if

|F1 ∩ F2| ∈ L (mod p) ∀F1, F2 ∈ F , F1 6= F2.

The following fundamental question about L-intersecting families is largely open.
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Question 0.1.8. Given some set L, how large can an L-intersecting/(mod p)-L-intersecting (k-
uniform) family F ⊆ 2[n] be?

In the previous sections we settled several cases.

Examples:

• If L = {1, 2, . . . , n} then the largest L-intersecting family is of size 2n−1.

• If L = {1, 2, . . . , n} then the largest k-uniform L-intersecting family is
(
n−1
k−1
)
.

• L = {λ}, then the largest L-intersecting family is of size at most n provided 1 ≤ λ ≤ n (and
equal to n+ 1 provided λ = 0).

• L = {0}, then the largest (mod 2)-L-intersecting family is of size at least 2b
n
2 c.

• L = {0}, then the largest (mod 2)-L-intersecting (mod 2)-1-uniform family is of size n.

While no-one knows a complete answer to Question 0.1.8, we can provide sharp answers that
depend only on the cardinality of L. In the previous section we dealt with cases when |L| = 1.

First we consider the modular case, i.e. extensions of the Oddtown Theorem. To this end we
introduce a far-reaching new point of view to the linear independence of vectors, involving poly-
nomials. The obtained General Mod-p-Town Theorem will also facilitate unexpected applications
in geometry. In order to tackle the uniform case and non-modular problems, in particular the
generalizations of Fischer’s Inequality, we need to add a couple of useful enhancements to the
existing toolbox.

Modular intersection restrictions—Extensions of the Oddtown Theorem

From the proofs of the Oddtown Theorem and the Fischer Inequality it is clear that whenever we
find a field over which the intersection matrix is non-singular then the size of the family is bounded
by the number of points. In this direction, we state explicitely the following straightforward
generalization of the Oddtown Theorem.
Theorem 0.1.9 (Mod-p-Town Theorem). Let p be a prime and let F ⊆ [n] be a (mod p)-{0}-
intersecting family such that |F | 6≡ 0 (mod p) for ∀F ∈ F . Then

|F| ≤ n.

Proof. Considering the Gram matrix of the characteristic vectors of such a family F , we find
that it is a diagonal matrix over the p-element field Fp, with diagonal elements that are not 0.
Hence the Gram matrix is non-singular over Fp and in turn the characteristic vectors are linearly
independent and their number is at most the dimension of the space.

If we omitted the restriction on the sizes of the sets, one can construct (analogously to the Eventown
construction) a (mod p)-{0}-intersecting family of size 2bn/pc. It turns out that this restriction,
forbidding set sizes to be equal to an intersection size (mod p), is enough to guarantee a tight
bound that is polynomial in n (as opposed to exponential), no matter how many elements L has.
The degree of the polynomial depends on |L| though.
Theorem 0.1.10 (General Mod-p-Town Theorem). Let p be a prime, L be a set of s integers,
and F ⊆ 2[n] be a (mod p)-L-intersecting family.

(a) [Deza-Frankl-Singhi, 1983] If |F | /∈ L (mod p) for every F ∈ F , then

|F| ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

0

)
;
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(b) [Frankl-Wilson, 1981] If F is (mod p)-k-uniform (that is |F | ≡ k (mod p) for every F ∈ F),
for some k 6∈ L ∪ [0, s− 1] (mod p) then

|F| ≤
(
n

s

)
.

Remark. Theorem 0.1.10 part (b) is tight and part (a) is asymptotically tight, for any prime
p and positive integer s < p. Indeed, the family F =

(
[n]
s

)
is (mod p)-L-intersecting with L =

{0, 1, . . . , s− 1} and |F | = s /∈ L (mod p) for every F ∈ F .

The main point of the proof of the General Mod-p-Town Theorem is how to adapt the dimension
argument of the Oddtown Theorem to this more general set-up. In our original framework we
associated with each set Fi its characteristic vector vi ∈ {0, 1}n and proved that they are linearly
independent. This cannot anymore work as the upper bound we seek3 is much larger than the
dimension n of the space these vectors live in.

Observe however that the linear independence of vectors vi ∈ Fn is equivalent to the linear inde-
pendence of the corresponding linear functions `i(x) = (vi)1x1 + . . .+ (vi)nxn. This motivates us
to associate with each set Fi ∈ F a function instead of a vector, and prove the linear independence
of these functions.

To this end the following criterion will be convenient.
Lemma 0.1.11. Let F be a field and let f1, . . . , fm ∈ F[x1, . . . xn] polynomials in n variables. If
there exist vectors v1, . . . ,vm ∈ Fn such that

• fi(vi) 6= 0 for all i ∈ [m], and

• fi(vj) = 0 for all j 6= i,

then f1, . . . , fm are linearly independent.

Proof. Suppose λ1f1 + · · · + λmfm = 0. Substituting vi, the equality reduces to λifi(vi) = 0.
Since fi(vi) 6= 0, we infer λi = 0.

Proof of Theoerm 0.1.10. In the Mod-p-Town Theorem the intersection conditions |Fi ∩ Fj | ≡ 0
(mod p), i 6= j, translated to the orthogonality of the characteristic vectors over Fp, which (together
with them not being self-orthogonal) took care of their linear independence. Now, instead of
vi · vj = 0, we might have vi · vj = ` for various different ` ∈ L ⊆ Fp. To encode the intersection
conditions consider the product∏

`∈L

(vi · vj − `) =
∏
`∈L

(|Fi ∩ Fj | − `) .

By the conditions of our theorem this product is 0 for every i 6= j and non-zero for i = j.

To each Fi let us associate the polynomial function fi : Fnp → Fp defined by

fi(x) =
∏
`∈L

(vi · x− `) =
∏
`∈L

((vi)1x1 + · · ·+ (vi)mxm − `) .

Then the conditions of our theorem translate exactly to the conditions of Lemma 0.1.11 and hence
the functions f1, . . . , fm are linearly independent. Therefore their number cannot be more than
the dimension of the Fp-vector space Fp[x1, . . . xn]. This is waaay too large for our purposes, but
fortunately the functions f1, . . . , fm live in a much smaller space: the subspace they generate.

What is then this dimension dim (〈f1, . . . , fm〉)? Each fi is the product of s linear functions in
the n variables x1, . . . , xn. Expanding the parenthesis, each fi is the linear combination of the

3that we actually need to seek, due to the large construction in the Remark
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monomial terms of the form xs11 · · · · · xsnn with s1 + · · · + sn ≤ s. The number of these terms
is equal to |{(s0, s1, . . . , sn) ∈ Nn+1

0 :
∑n
i=0 si = s}|, i.e. the number of ways to distribute s

indistinguishable balls into n+ 1 labeled boxes:
(
n+s
s

)
. This is still too big compared to what we

set out to show.

Multilinearization. We introduce yet another trick, called multilinearization to reduce the
dimension. We will make use of the fact that the characteristic vectors (witnessing the linear
independence in the Lemma) have only 0 or 1 coordinates.

From fi define f̃i by expanding the product and replacing each power xki by a term xi for every
k ≥ 1 and i, 1 ≤ i ≤ m. So for example, the term x32x5x

11
9 x

2
10 is replaced by x2x5x9x10.

Since 0k = 0 and 1k = 1 for every k ≥ 1 we have that fi(vj) = f̃i(vj) for every i, j. Consequently
the conditions of the lemma remain valid for the f̃is and the (now) multilinear polynomials
f̃1, . . . , f̃m of total degree s are also linearly independent.

Bounding the dimension for part (a). These polynomials live in a space spanned by the
basic monomials

∏k
j=1 xij of degree at most s. Such monomials are determined by a subset of the

variables of size at most s, hence their number is equal to(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

1

)
+

(
n

0

)
.

Mod-p uniform families. For part (b) we need to strengthen the bound using the fact that all
members of the family have the same cardinality k modulo p. We do this by adding more functions
to the family f̃1, . . . , f̃m, that are also part of the vector space of multilinear polynomials of degree
at most s over Fp, and show that this larger set of functions is still linearly independent!

A natural choice is the set of monomials
∏
i∈I xi corresponding to the subsets I ⊆ [n] of size

at most s − 1. These polynomials are part of the standard basis of Fp[x1, . . . xn] and hence are
linearly independent. In order to show their linear indepedence from f̃1, . . . , f̃m as well, they are
multiplied with the factor (

∑n
i=1 xi − k).

Formally, for |I| ≤ s− 1, let gI(x) be the multilinearized version of (
∑
xi − k)

∏
i∈I xi. Suppose

n∑
i=1

λif̃i +
∑
|I|≤s−1

µIgI ≡ 0 (1)

in Fp[x1, . . . xn]. When substituting the characteristic vector vi into this linear combination, what
we are left with is λif̃i(vi) = 0, which implies λi = 0 (since f̃i(vi) =

∏
`∈L(k − `) 6= 0, as k 6∈ L

(mod p)). Indeed f̃j(vi) = 0 for j 6= i (since pairwise intersection sizes are in L) and gI(vi) = 0
(since

∑n
j=1(vi)j − k = 0 in Fp, due to F being (mod p)-k-uniform).

Once we know that all λi are 0 , we can show that each µI is 0 the standard way: substituting
the characteristic vectors vJ of the subsets J ⊆ [n] of size at most s − 1. Formally, define a
total ordering ≺ on the subsets of [n] with cardinality ≤ s− 1 that preserves the subset relation.
Supposing that (1) is non-trivial, let J be the minimal subset according to ≺ for which µJ 6= 0.
Substituting vJ into (1) we have that

• for I ≺ J , µIgI(vJ) = 0, since µI = 0 by the minimality of J ;

• For I � J , µIgI(vJ) = 0, since I 6⊆ J implies
∏
i∈I(vJ)i = 0;

• For I = J we have µJgJ(vJ) = µJ
∏
i∈J(vJ)i(

∑n
i=1(vJ)i − k) = µJ · 1 · (|J | − k) 6= 0 in Fp,

since k 6∈ [0, s− 1] (mod p) and µJ 6= 0 by the definition of J .
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This contradicts that the substitution of vJ into (1) should be 0. Hence the linear combination is
trivial and the functions involved are linearly independent.

So we found a set of m +
∑s−1
i=0

(
n
i

)
linearly independent functions in the space of multilinear

polynomials of degree s in n variables. The dimension of this space is
∑s
i=1

(
n
i

)
, implying the

promised bound on m.

Remark Note that the upper bound in part (a) of the above theorem can be reduced by 1 if
0 ∈ L. Indeed, in that case the constant monomial 1 is not part of the span of f̃1, . . . , f̃m.

Remark. The theorem also holds if instead of requiring that k is not among 0, 1, . . . , s−1 modulo
p, we assume only that k + s ≤ n. The same set of polynomials will still be linearly independent,
but we need to use Inclusion-Exclusion to work around that now

∑
(vJ)i − k could be 0 for some

|J | ≤ s− 1.

Non-modular intersection theorems—Extentions of Fischer’s Inequality

Our next theorem extends Fischer’s Inequality and is tight for every value of the parameters. Note
that, unlike in the General Mod-p-Town Theorem, we do not need to require anything about the
sizes of the sets of the family.
Theorem 0.1.12. Let L be a set of s integers and let F be an L-intersecting family.

(a) [Frankl-Wilson, 1981] Then |F| ≤
∑s
i=0

(
n
i

)
.

(b) [Ray-Chaudhuri–Wilson, 1969] If additionally F is uniform then |F| ≤
(
n
s

)
.

Proof. First note that part (b) readily follows from part (b) of the General Mod-p-Town Theorem
if we use it with a prime p > n. Indeed, then an L-interscting family on vertex set [n] is also
(mod p)-L-intersecting and a k-uniform family is also (mod p)-k-uniform.

For part (a) let us first consider the same functions fi(x) =
∏
`∈L(vi · x − `) that we used in

the General Mod-p-Town Theorem. It will still be true that fi(vj) = 0 whenever i 6= j, since
vi · vj = |Fi ∩ Fj | is equal to some element of L. For the diagonal entries however we might have
fi(vi) = 0, since nothing forbids now that a cardinality |Fi| is an element of L. Consequently we
cannot anymore use the diagonal criterion of Lemma 0.1.11.

To avoid vanishing diagonal entries we modify our functions and define fi : Rn → R, by taking the
product of only those factors that correspond to elements of L which signal a proper intersection
with Fi. That is,

fi(x) =
∏

`∈L,`<|Fi|

(x · vi − `).

This way the diagonal entries are alright: fi(vi) 6= 0 for every i = 1, 2, . . . ,m. On the other hand
some of the non-diagonal entries now might become non-zero, so Lemma 0.1.11 cannot be used
again. However, this problem can be circumvented by arranging the sets in an order, so that the
matrix of substitutions is upper triangular.

The following generalization of Lemma 0.1.11 states that linear independence can be concluded
when the matrix of substitutions is non-singular.

Lemma 0.1.13. Let F be a field and let f1, . . . , fm ∈ F[x1, . . . xn] polynomials in n variables.
If there exist vectors v1, . . . ,vm ∈ Fn such that the matrix M = (fi (vj))i,j of substitutions is
non-singular, then f1, . . . , fm are linearly independent.

Proof. Suppose there is a vanishing linear combination λ1f1 + · · · + λmfm = 0. Then the jth
entry of the vector (λ1, . . . λn)M is equal to the substitution of vj into the linear combination.
Consequently (λ1, . . . λn)M = 0. Since M is non-singular, we infer that all λi = 0.
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Let us order the elements of F such that |F1| ≤ |F2| ≤ · · · ≤ |Fm|. Then we have

fi(vj)

{
6= 0 if i = j;
= 0 if i > j.

Indeed, if i > j then vi · vj = |Fi ∩ Fj | < |Fi|, since |Fj | ≤ |Fi|. This means that the substitution
matrix is upper-triangular with non-zero diagonal entries. Lemma 0.1.13 applies and f1, . . . , fm
are linearly independent.

Now we can finish exactly as we did in the proof of the General Mod-p-Town Theorem: using the
multilinear versions f̃i instead of fi. Since the vectors witnessing the linear independence of the
fis in Lemma 0.1.13 are 0/1-vectors, the substituted values do not change and the multilinearized
versions f̃i are also independent. They are again multilinear polynomials of degree at most s in n
variables, hence the dimension count does not change.

Remark. 1.The theorem is tight for every s. For L = {0, 1, 2, . . . , s− 1} the family F =
{F ⊆ [n] : |F | ≤ s} is L-intersecting.

2. Part (b) was the first in the row of these type of intersection theorems and an important
step in the development of the linear algebra method. The modular versions were developed
later by Frankl and Wilson in order to give better explicit construction of Ransey graphs. The
General Modp-Town Theorem was later also used to various geometric problems. A couple of
these applications will be discussed in the next section.

0.1.3 Applications in Geometry

There are numerous applications of intersection theorems in geometry. The connection, just like
the one to linear algebra, is quite simple. Interpreting characteristic vectors as points in the
euclidean space Rn, we obtain that the distance between vA and vB is exactly the size of the
symmetric difference of A and B. In case |A| = |B| = k, we have that the distance

‖vA − vB‖ =
√
|(A \B) ∪ (B \A)| =

√
2k − 2|A ∩B|. (2)

Hence restricting pairwise intersection sizes within a k-uniform family means restricting the
distances between the corresponding points. This idea was applied succesfully in several long-
standing, classic open problem in geometry.

Chromatic number of the unit distance graph

A fascinating open problem in combinatorial geometry asks to color the points of the Euclidean
plane, with as few colors as possible, such that no pairs of points at distance one have the same
color.

Formally, the unit distance graph UDn of the n-dimensional euclidean space is defined on the
vertex set V (UDn) = Rn with edge set

E(Gn) = {xy : ‖x− y‖ = 1}.

Problem 0.1.14 (Hadwiger-Nelson problem). What is the chromatic number χ(UD2) of the
plane?

The best known bounds still allow the possibility of four different values.
Proposition 0.1.15. 4 ≤ χ(UD2) ≤ 7.
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Proof. For the lower bound we can find a subgraph of UD2 with chromatic number 4. (The
smallest such example is on 7 vertices.) For the upper bound one can give an explicit 7-coloring
of the plane without a monochromatic pair of points at distance one using a tiling of the plane
into regular hexagons with diameter slightly less than 1.

The problem has interesting ties to the axiomatization of set theory. De Bruijn and Erdxős, using
the Axiom of Choice, showed that the chromatic number is attained on a finite subset of the plane.
Soifer and Shelah present evidence that the answer might depend on the ste of axioms we choose
for set theory. It is also known that th chromatic numer is at least 5 if all color classes should be
measurable and it is at least 6 if all color classes are the unions of faces of a locally finite plane
graph.

The value of the chromatic number of the 3-space is known to be between 6 and 15. The value
for large n is also an old question.
Problem 0.1.16. How fast does χ(Gn) grow?

Since we are talking about the chromatic number of an infinite graph, even finiteness is a question
at first.
Homework 0.1.17. χ(UDn) ≤ nn/2 · 2n.

An immediate lower bound of χ(UDn) ≥ n + 1 is given by a regular simplex of side length 1,
which hosts a subgraph of UDn isomorphic to Kn+1.

The superexponential upper bound was improved by Larman and Rogers (1972) to exponential
(χ(UDn) ≤ constn (HW)) and the linear lower bound to quadratic (χ(UDn) = Ω(n2)).

The huge gap between the bounds remained until Frankl and Wilson managed to find a way to
bring extremal set theory to the rescue and improve the lower bound to exponential.
Theorem 0.1.18 (Frankl-Wilson, 1981). χ(Gn) ≥ Ω(1.1n).

Proof. Similar to the above lower bound on χ(UD2), our lower bound on χ(UDn) will be given
by estimating the chromatic number of a well-chosen finite subgraph Hn ⊆ UDn. To that end we
plan to upper bound the independence number of Hn.

For Hn we use some of the vertices of the hypercube {0, 1}n ⊆ Rn, which we interpret as charac-
teristic vectors of a k-uniform set family Hn ⊆ 2[n].

One small problem with this idea is that there is no unit-distance within the set Bk,n = {v ∈
{0, 1}n :

∑
vi = k}, so UDn restricted to Bk,n has chromatic number 1. This is easily overcome

by realizing that unit-distance plays no special role in our problem. The unit distance graph UDn

and the “δ-distance graph” UDδ
n (with vertex set V (UDδ

n) = Rn and edge set E(UDδ
n) = {xy :

‖x− y‖ = δ}) are isomorphic. So we could be flexible with which particular distance we care for,
and will choose one for which α(UDδ

n) is small.

Any subset I of V (UDδ
n) is independent if no pairs of points have a distance δ between hem. For

a subset I ⊆ V (Hn) this can be reformulated in the language of set families: the corresponding
subfamily I ⊆ H should not have two sets with a pairwise intersection of size k− δ2

2 =: `. In other
words the corresponding family I should be L = [0, k − 1] \ {`}-intersecting. Our intersection
theorems give an upper bound

∑k−1
i=0

(
n
i

)
. This is not so good as it is only a factor n away from(

n
k

)
which is the number of vertices.

To obtain a stronger upper bound on the independence number we plan to use the modular
intersection theorem instead with some prime p. To make this work we need that ` is the only
representative of its (mod p)-residue class below k, that is if ` + p ≥ k. Then a k-uniform L-
intersecting family is also (mod p)-L′-intersecting with L′ = [0, p − 1] \ {`}. To use the General
Mod-p-town Theorem we also must have that k 6∈ L′ (mod p), that is k ≡ ` (mod p). This should
explain our choice ` = p− 1, k = 2p− 1, and δ =

√
2p for our parameters.
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So
(
n
p−1
)
is an upper bound on the independence number of Hn in UDδ

n and hence(
n

2p−1
)(

n
p−1
) = 2(H( 2

c )−H( 1
c )+o(1))n

is a lower bound on the chromatic number for large n = cp. Optimizing the constant factor gives
c = 4 + 2

√
2 ∼ 6.82 and the lower bound is then at least 1.2n.

Borsuk’s Conjecture

Dead at the age of 60. Died after no
apparent signs of illness, unexpectedly, of
grave combinatorial causes.

Epitaph of Babai and Frankl
for Borsuk’s Conjecture

Dividing a task, a structre, a set into smaller, simpler, more transparent parts is the number one
general approach to solving problems concerning them. In this section we will consider partitioning
subsets of the euclidean space into “smaller” ones.

The diameter is one of the basic measures of how large a set B ⊆ Rd is. It is defined as

diam(B) := sup{||x− y|| : x, y ∈ B}.

A set is called bounded if its diameter is finite.

A long-standing conjecture of Borsuk was concerned about breaking bounded sets into sets of
smaller diameter. A partition of the regular d-dimensional simplex σd ⊆ Rd into sets of smaller
diameter needs at least d+ 1 sets. Indeed, any two of the d+ 1 vertices of σd have distance that
is equal to the diameter of σd. Consequently no two of the vertices can be in the same part of the
partition. It is also not difficult to see that a partition of σd into d+ 1 sets of smaller diameter is
possible.

Borsuk conjectured that the simplex should be a “worst case” with respect to this measure.
Conjecture 0.1.19 (Borsuk’s Conjecture (1933)). Every set in Rd with bounded, non-zero diam-
eter can be partitioned into d+ 1 sets of smaller diameter.

It is easy to verify the conjecture in dimension 1. Cover a bounded set B ⊆ R with the two closed
intervals

[
inf B, inf B+supB

2

]
and

[
inf B+supB

2 , supB
]
, each with diameter diam(B)

2 < diam(B). 4

Over the years Borsuk’s conjecture was proved for:

• all bodies in dimensions 2 and 3,

• centrally symmetric bodies,

• bodies with smooth surface.

It turned out however, that the general conjecture is not only false, but very false.
Theorem 0.1.20 (Kahn-Kalai, 1992). There exists a bounded set in Rd that cannot be partitioned
into 1.2

√
d sets of smaller diameter.

Proof. Partitioning a finite point set Pd ⊆ Rd into sets of smaller diameter means partitioning Pd
into independent sets of the δ-distance graph UDδ

d, where δ = diam(Pd) is the largest distance
that occurs among the points of Pd. We will construct a point set Pd ⊆ Rd, such that the largest
independent set of UDδ

d in Pd is small, hence one needs many of them to cover Pd.
4The partition is then the intersection of the set B with these intervals.
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In our previous theorem, we have already proved a statement in a similar vein for the point set
B

(k)
n (containing vectors of length n with k 1-entries and n − k 0-entries). For any prime p and

uniformity k = 2p−1 we have shown that the largest independent set of UD
√
2p

n contained in B(k)
n

is at most
(
n
p−1
)
. So the only difference compared to what we want here is the distance we focus

on: instead of the largest distance, our theorem above focused on the particular distance
√

2p.

Our plan is to embed B(k)
n injectively into some B(q)

d , so that the pairs of points at distance
√

2p
embed to pairs of points at distance that is the diameter of the image point set Pd. Then

α
(
UD

diam(Pd)
d [Pd]

)
= α

(
UD

√
2p

n

[
B(k)
n

])
≤
(

n

p− 1

)
.

How should we define the magic map? In the previous subsection we have already observed how
the distance between two characteristic vectors of sets of size q is connected to the size of their
intersection: ||vA−vB||2 = 2q− 2|A∩B|. That is, the diameter appears as the distance between
the characteristic vectors of two members A and B of some q-uniform family F if and only if
|A ∩B| is the smallest possible intersection size among the members of F .

Distance
√

2p in B(k)
n corresponds to intersection size k− 1

2

(√
2p
)2

= p− 1 in
(
[n]
k

)
. Therefore we

need an injective map from
(
[n]
k

)
into

(
[d]
q

)
such that pairs of k-sets with intersection size p− 1 are

taken into pairs of q-sets having the smallest possible intersection size that comes up within the
image.

The combinatorial idea is to consider the set of
(
n
2

)
pairs of the base set and to each k-subset of

[n] associate the set of pairs that are “crossing” between the set and its complement. Intuitively,
two such sets of crossing pairs intersect in as few pairs as possible if the sets themselves overlap
both each other and each other’s complements as little as possible.

Formally, for every A ∈
(
[n]
k

)
we define a subset SA ∈

( ([n]
2 )

k(n−k)

)
of “crossing” pairs as follows

SA :=

{
T ∈

(
[n]

2

)
: |T ∩A| = 1

}
.

We count those pairs that are crossing for both sets A and B:

|SA ∩ SB | = |A ∩B||(A ∪B)c|+ |A \B||B \A| = `(n− 2k + `) + (k − `)2

= 2`2 + (n− 4k)`+ k2,

where ` = |A ∩ B|. This quadratic function is minimized at ` = 4k−n
4 = 2p − 1 − n

4 . In order to
make sure that for integers it is minimized exactly at ` = p− 1, we set n = 4p.

Then for the point set

Pd :=

{
vSF
∈ {0, 1}d : F ∈

(
[n]

k

)}
where d =

(
n
2

)
, we have that ||vSA

−vSB
|| = diam(Pd) if and only if |SA ∩SB | = min{|SC ∩SD| :

C,D ∈
(
[n]
k

)
} if and only if |A ∩B| = p− 1 if and only if ||vA − vB|| =

√
2p.

The size of Pd is
(
n
k

)
and hence for large d one needs at least(
4p

2p−1
)(

4p
p−1
) = 2(1−H(1/4)+o(1))n = 2(1−H(1/4)+o(1))

√
2d > 1.1

√
d

subsets of smaller diameter to cover it.
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