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In applications of the linear algebra method we have seen so far the restrictions on the set family
included single sets and/or pairs of sets. For example, the size of sets and/or the size of pairwise
intersection of sets from the family was restricted in some way. This restriction could then be
encoded into information about the dot product of charateristic vectors, which then later could
be utilzed to bound the dimension of an appropriate space of vectors or functions associated with
the members of the family.

These applications all fundamentally depended on the dot product, translating the combinatorial
restrictions to linear algebra, being a pairwise operation. Until very recently there was no known
method that could effectively use linear algebra to problems involving restrictions involving more
than two sets from the family. In 2016 there was a breakthrough in this direction. In a matter of
just a couple of weeks a technique was developed to study exactly the problems of this sort. The
technique was used to shatter the best known bounds in several well-studied problems of extremal
combinatorics. Even more excitingly, everything that happened can be fully explained in a Master
course. In this section we introduce two of the problems and apply the method of slice rank of
tensors to solve them.

1 Sunflower-free families

In the section on the classics we discussed the Erdős-Rado Sunflower Conjecture about the maxi-
mum number of sets a k-uniform family can contain without containing a sunflower with ` petals
(an `-sunflower). This conjecture is very open, even in the case ` = 3, i.e. when we are looking
for three sets in the family such that all three pairwise intersections are the same set.

An important feature of this problem and also the connected theorem of Erdős and Rado is the
independence of the conjectured bound on the number of vertices. This presents a substantial
difficulty for any approach. In order to get grip on this notoriously difficult problem, Erdős and
Szemerédi [4] suggested to obtain a non-trivial upper bound involving the number n of vertices
instead of the uniformity. The best they could come up with was that the maximum size of a
3-sunflower-free family on n vertices was at most 2n/ec

√
n. This is hardly better than the trivial

bound of 2n, while they believed that an exponential factor improvement should also be true.
Conjecture 1.1. For every ` ∈ N+ there exists a constant c` < 2 such that every family F ⊆ 2[n]

of size at least cn` contains an `-sunflower.

Erdős and Szemerédi proved that the Erdős-Rado Conjecture implies their conjecture.

The k-uniform construction we gave for the Erdős-Rado Conjecture on 3-sunflowers had n = 2k
vertices and contained 2k sets. This gives a lower bound of

√
2 for the constant c3 in the Erdős-

Szemerédi Conjecture.

Similarly to the Erdős-Rado Sunflower Conjecture, the Erdős-Szemerédi Sunflower Conjecture was
already wide open for ` = 3. Recently the conjecture was proved for ` = 3 and next we show the
proof. The conjecture is still wide open for ` > 3.
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Theorem 1.2 ([6]). For the constant c = 3
3√4

< 1.89 we have that every family F ⊆ 2[n] of size
at least cn contains a 3-sunflower.

Before going into the actual proof, we motivate the general proof strategy we use in this section.
In the intersection theorems of the previous section we encountered restrictions on every single
set and/or every pair of sets from the family. In some of these proofs, e.g. for Fischer’s Inequality
and for the Mod-p-Town Theorem, we converted this information into a |F|× |F| diagonal matrix
with non-zero diagonal entries. Then, from the way this matrix was constructed, we have shown
that its rank, that is equal to its order |F|, can be bounded by n.

In this argument it was crucial that the restrictions concerned pairs of members of the family, so
we could build a matrix. In the 3-sunflower problem at hand, we have a restriction about every
triple of sets of the family: they cannot form a sunflower. We will translate this information into
a |F| × |F| × |F| matrix, aka a 3-tensor, which only has non-zero entries in its main diagonal.
We appropriately generalize the concept of rank of a matrix to 3-tensors. This new rank concept,
called slice rank, is always at most the usual tensor rank1, and in the special case of a diagonal
tensor with non-zero diagonal entries it is equal to the order |F| of the tensor. Furthermore we
will be able to effectively bound the slice rank of the particular 3-tensors and hence obtain an
upper bound on |F|.
Definition 1.3. Let X be a finite set and F be a field. A function M : Xk → F is called a
k-tensor. We call a k-tensor diagonal if M(x1, . . . , xk) 6= 0 implies x1 = · · · = xk.

A 1-tensor is just a vector, and a 2-tensor is a matrix.
Definition 1.4. A k-tensor S : Xk → F is called a slice if there exist a 1-tensor f : X →
F and a (k − 1)-tensor g : Xk−1 → F, such that for some i ∈ |X| we have S(x1, . . . , xk) =
f(xi)g(x1, . . . , xi−1, xi+1, . . . , xk) for every x1, . . . , xk ∈ X.

The slice rank of a k-tensor M : Xk → F is the smallest integer r such that M can be written as
a sum of r slices. The slice rank of M is denoted by srk(M).

When k = 2, a slice S is just a matrix of rank at most 1. In a matrix S of rank at most 1 each
row is a constant multiple of some vector vT , so S has the form uvT , where u is the column vector
of the multipliers. That is, S is the product of u and v, when they are viewed as 1-tensors on the
first and second coordinate of S, respectively. As the rank of a matrix M is the smallest number
r such that M is the sum of r matrices of rank 1, the slice rank of a 2-tensor is just the usual
matrix rank.

Observe that every k-tensor can be written as M(x1, . . . , xk) =
∑
x∈X δx1xM(x, x2, x3, . . . , xk),

where δab is the Kronecker delta function. Here the terms are slices, so the slice rank is never
more than |X|.

In the definition of the usual tensor rank the k-tensor has to be written as the sum of terms of
the form f1(x1) · · · · · fk(xk), i.e. product of k 1-tensors. Consequently, the slice rank is always
less than or equal to the usual tensor rank.

The following lemma is the generalization of the trivial fact that a diagonal matrix with non-zero
diagonal entries has rank |X|.
Lemma 1.5. Let M : Xk → F be a diagonal k-tensor with non-zero diagonal entries. Then

srk(M) = |X|.

We give the proof after our two application.

Proof. Let S ⊆ 2[n] be a 3-sunflower-free family. To create our 3-tensor we observe that three
distinct sets form a sunflower if and only if NO element of [n] occurs in exactly two of them.

1The tensor rank of a function M : Xk → F, where X is a finite set and F is a field, is equal to the minimum
non-negative integer r for which we can write M(x1, . . . , xk) =

∑r
i=1 f1(x1)f2(x2) · · · fk(xk) where each fi is a

function from X to F.
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Formulated in terms of characteristic vectors this says that for any three distinct elements A,B,C
of S there exists an i ∈ [n] such that (vA+vB+vC)i = 2. This motivates us to define the function

M(x, y, z) :=

n∏
i=1

(2− (x+ y + z)i) ,

where x, y, z ∈ Fn. Then M(vA, vB , vC) = 0 for every three distinct members A,B,C of S. To
make M a diagonal 3-tensor on S we also need to take care of the substitutions where two of the
three sets are equal. For any A 6= B = C we have that vA+vB+vC has a coordinate 2 if and only
if B has an element that is not in A, i.e., B 6⊆ A. For this reason we partition S to antichains,
say classifying the members according to their size: let Sj = {S ∈ S : |S| = j}. Then M is a
diagonal tensor on each Sj . Since there are only n+ 1 different values of j and we are seeking an
exponential upper bound, it won’t make much of a difference if we handle each Sj separately.

Finally note that the diagonal entries M(vA, vA, vA) = (−1)|A|2n−|A| are all non-zero if we choose
to work over a field whose characteristic is not 2, say F = R. Applying Lemma 1.5 to the 3-tensor
M on Sj , we obtain that |Sj | = srk(M).

All that is left is to bound the slice rank ofM , which we do by finding a particular decomposition of
M into slices. M is a polynomial of total degree n in the 3n variables x1, . . . , xn, y1, . . . , yn, z1, . . . , zn.
Expanding the parenthesis we obtain

M(x, y, z) =
∑

ItJtKtL=[n]

2|L|xIyJzK ,

where we use the notation wI =
∏
i∈I wi for the product of some coordinates of vector w, and t

denotes disjoint union. We classify the terms according to the smallest of the sizes |I|, |J |, |K|,
breaking ties arbitrarily. Since I, J and K are disjoint, this minimum size is definitely at most n

3 .
Hence we can write

M(x, y, z) =
∑
I⊆[n]
|I|≤n/3

xIfI(y, z) +
∑
J⊆[n]
|J|≤n/3

yJgJ(x, z) +
∑
K⊆[n]
|K|≤n/3

zKhK(x, y)

for some 2-tensors fI , gJ , hK , by collecting all the corresponding terms. Each of the terms in this
sum are slices, so the slice rank of M is at most 3

∑n/3
i=0

(
n
i

)
. Therefore,

|S| =
n∑
j=0

|Sj | ≤ 3(n+ 1)

n/3∑
i=0

(
n

i

)
= 2(H(1/3)+o(1))n < 1.89n.

2 The Capset Problem

In the visual perception game SET 2 one plays with cards depicting objects having four features:
shape, color, number, and shading. Each feature has three possible values: the shape can be oval,
squiggles, or diamonds, the color can be red, purple or green, the number can be one, two or
three, and the shading can be solid, striped or outlined. Each of the combinations of these occurs
on exactly one card, which makes up the deck of 34 = 81 cards. The game starts by the players
putting out 12 cards face up and then staring at it, looking for a configuration of three cards called
SET. A SET consists of three cards in which each of the cards’ features, looked at one-by-one, are
the same on each card, or, are different on each card.

2https://www.setgame.com/set/puzzle
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Figure 1: A SET in which exactly one
feature is the same, the number

Figure 2: A SET in which all features
are different

Whoever spots a SET first and lets this known to the opponents with a emphatic shout “SET!”,
can take the three cards. Three new cards are put out and the staring for a new SET continues.
Whoever has the most cards at the end wins. Sometimes it happens that after some staring the
players realize that the particular 12 cards in front of them does not contain any SET. In that case
they add three more cards to the table and try to find a SET among the 15 cards. Very rarely, but
it could still happen that no SET is found and three more cards need to be added. Apparently
even then it could happen that the 18 cards does not contain any SET (though I have never
encountered such a configurations during my playing career). What is then the minimum number
of cards where no matter what there is a SET? This number is 21 and it was proved much before
the invention of the game by the Italian mathematician Giuseppe Pellegrino [5]. The motivation
for the study of these objects for mathematicians came from finite geometry and coding theory.
Let us see now finite geometry comes into the picture.

We can encode the cards of SET as vectors of length four, where each coordinate corresponds to a
feature and can take three different values. This is exactly the vector space F4

3. What does a SET
corresponds to in this vector space? The elements a, b, c ∈ F3 sum up to 0 if they are pairwise
distinct and so do they if they are all the same. If a 6= b = c however, then a+ b+ c = a+ 2b =
a− b 6= 0 in F3. Hence three distinct cards corresponding to the vectors x, y, z ∈ F4

3 form a SET
if and only x+ y + z = 0

Rewriting this further x + y + z = x + y − 2z over F3, so a SET-free set of vectors is just a
3-AP-free set of vectors. We already studied this problem extensively within the positive integers,
but the concept of a 3-AP makes sense in any abelian group . Here we will be looking for the
largest number r3

(
Fd3
)
such that there is a 3-AP-free set of that size in Fd3. In terms of the card

game SET, if cards had d features instead of 4, then r3
(
Fd3
)
+ 1 would be the smallest number of

cards you would need to put out face up on the table to guarantee to find three of them forming
a SET. The determination of r3

(
Fd3
)
is known as the capset problem, where the “cap” in the name

originates in finite geometry.3

3 The name “cap” in the “capset problem” comes from the fact that 3-APs are also equivalent to lines in the
corresponding affine space over F3. Analogously to the real d-space, a line in Fd, over an arbitrary field F, is an
affine subspace of dimension 1. Over F3 this means the three-element subsets of the form {αm + t : α ∈ F3},
where m ∈ Fd

3 \ {0} could be considered the “slope” and t ∈ Fd
3 is the translation vector. Clearly, the sum
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The greedy construction of Erdős and Turán for r3(n), containing the integers without any digit
2 in their ternary expansion, can also be interpreted in Fd3: the set {0, 1}d is a 3-AP-free set, so
2d ≤ r3(Fd3). From above, obviously, r3(Fd3) ≤ 3d. The small values were also determined up to
some point: for example, we have r3(F2

3) = 4, r3(F3
3) = 9 and r3(F4

3) = 20.

Besides its relevance in finite geometry, where it is mostly studied in fixed dimension over the
field Fq with a growing q, the problem received significant attention from combinatorial number
theorists due to its connection to the Density Hales-Jewett Theorem and to 3-AP-free sets in the
integers in particular. From the various different proofs of r3(n) = o(n), by far the best upper
bound was delivered by the analytic number theory approach of Roth from the 50’s, using Fourier-
techniques. Since then this was improved, transformed and developed several times to reach the
current record of n/ log1−o(1) n by Sanders (2011). Going beyond the exponent 1 of the logarithm
in the denominator is considered a conceptually important benchmark for the r3(n) problem, with
further implications.

The r3
(
Fd3
)
-problem was always considered a plausible terrain to develop and test ideas and

methods for the r3(n)-problem. Still, the main question for a long time was just to decide whether
r3
(
Fd3
)
behaves similarly to r3(n) in the sense that it is larger than any power of the size 3d of the

base set. We know that r3(n) is larger than n1−ε for any ε > 0, is r3
(
Fd3
)
> 3(1−ε)d for any ε > 0?

Progress on this problem was really slow. In 1982 Brown and Buhler showed that r3
(
Fd3
)
= o(3d).

In 1995 Meshulam used Fourier analysis on Fd3 to get an explicit upper bound of 3d

d . Note that
this is comparable to Sanders’ upper bound on r3(n), where the density is the logarithm of the
base set. In 2012 Bateman and Katz [2] managed to beyond Meshulam’s bound by a tiny ε power
of the denominator. Their argument was long and technical and was born in hope of inspiring
similar progress for r3(n).

While such small improvement is still outstanding for r3(n), a much greater one was achieved in
2016 for r3(Fd3). To much surprise the argument used linear algebra instead of Fourier analysis
and was simple enough to be presented in a Masters course. Ellenberg and Gijswijt improved
the upper bound on r3(Fd3) by an exponential factor [3], hence establishing that the behaviour of
r3(Fd3) and r3(n) are significantly different. They were building on a breakthrough, achieved by
Croot, Lev, and Pach just a few days earlier, for the analogous 3-AP-free set problem in

(
Z/4Z)d

)
.

Theorem 2.1 (Ellenberg-Gijswijt, 2016). For large d

r3
(
Fd3
)
< 2.76d.

Proof. Let S ⊆ Fd3 be a 3-AP-free set. We have seen above that this equivalent to that for every
distinct a, b, c ∈ S, the sum a+ b+ c 6= 0. This motivates us to define the following function

M(x, y, z) =

d∏
i=1

(xi + yi + zi − 1)(xi + yi + zi − 2).

By the above M(a, b, c) = 0 for any distinct a, b, c ∈ S. The same holds for any a 6= b = c as well,
since α+2β 6= 0 in F3 for any α 6= β. So M is a diagonal 3-tensor on S. Since M(a, a, a) = 2d 6= 0
for any a ∈ Fd3, Lemma 1.5 applies, and we have |S| = srk(M).

To estimate the slice rank ofM we expandM as a polynomial in the 3d variables x1, . . . , xd, y1, . . . , yd, z1, . . . , zd.

t+(m+ t)+(2m+ t) = 3m+3t of the members of a line is always 0 over F3. In the other direction if x+y+ z = 0,
then the set {x, y, z} is a line with slope m = y − x and translation vector t = x.
A set of points is referred to a “cap” in finite geometry if it does not contain three collinear points. A typical

example of a cap in in F3
q comes from the solution set of the equation of an elliptic quadric z = f(x, y) (where f is

an irreducible degree 2 polynomial over Fq), which has size q2. In R3 some of these solution sets sort of look like
a cap, hence the name capset. In dimension 3 over Fq the elliptic quadric in fact gives the largest possible cap.
When q = 3, then 3-AP consist of exactly three collinear points, so the name capset problem for r3(Fd

3). Note that
while a cap is always a 3-AP free set, for q > 3 the converse is not true.
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The total degree is 2d and the degree in each variable is 2, so we can write

M(x, y, z) =
∑

α,β,γ∈{0,1,2}d
cα,β,γ

(
d∏
i=1

xαi
i

)(
d∏
i=1

yβi

i

)(
d∏
i=1

zγii

)
.

We classify the terms according to which of x, y, or z has the smallest total degree. Since the
overall total degree is 2d, at least one of

∑
αi,

∑
βi, or

∑
γi is at most 2d/3, and then

M(x, y, z) =
∑

α∈{0,1,2}d∑
αi≤2d/3

(
d∏
i=1

xαi
i

)
fα(y, z)+

∑
β∈{0,1,2}d∑
βi≤2d/3

(
d∏
i=1

yβi

i

)
gβ(x, z)+

∑
γ∈{0,1,2}d∑
γi≤2d/3

(
d∏
i=1

zγii

)
hγ(x, y),

for some 2-tensors fα, gβ , hγ . All these terms are slices, hence the slice rank is bounded by 3 times
the number of ways to select a vector α ∈ {0, 1, 2}d such that the sum of its coordinates is at most
2
3d. This number is

3 ·
∑

a+b+c=d
b+2c≤2d/3

d!

a!b!c!
,

where a, b, and c represent the number of 0, 1, and 2 coordinates of α, respectively.

To estimate this multinomial coefficient consider the expression

(1 + x+ x2)d =
∑

a,d,c∈N0
a+b+c=d

d!

a!b!c!
xb+2c,

which is true for every real x by the Multinomial Theorem. To make the terms of our interest,
i.e. b + 2c ≤ 2d

3 , the dominating ones, we first divide through by x2d/3 and then estimate when
0 < x < 1:

(x−2/3 + x1/3 + x4/3)d >
∑

a+b+c=d
b+2c≤2d/3

d!

a!b!c!
xb+2c− 2

3d >
∑

a+b+c=d
b+2c≤2d/3

d!

a!b!c!
.

Here in the first estimate we used that x > 0 and in the second one that x < 1. To obtain an
upper as strong as possible, we use the estimate for the particular x0, 0 < x0 < 1, that minimizes
the function f(x) = x−2/3 + x1/3 + x4/3 on this interval. Basic calculus shows that the minimum
is taken at x =

√
33−1
8 and its value is roughly 2.7551 which is less than 2.76. This gives us the

bound of 2.76d.

3 Proof of the Slice Rank Lemma

In this section we prove that the slice rank of a diagonal tensor with non-zero diagonal entries is
equal to its order.

Proof of Lemma 1.5. To simplify notation we only present the proof for k = 3, which is the case
we used in both of our applications anyway. The proof of the general case is similar.

Let M : X3 → F be an arbitrary diagonal 3-tensor with non-zero diagonal entries. The upper
bound of |X| holds for any 3-tensor and was proved in a remark right after the definition.

To show the lower bound, we assume that there is a decomposition of M into the sum of γ =
srk(M) < |X| slices and will arrive at a contradiction. So suppose

M(x, y, z) =

α∑
i=1

fi(x)Gi(y, z) +

β∑
i=α+1

fi(y)Gi(x, z) +

γ∑
i=β+1

fi(z)Gi(x, y),
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where 0 ≤ α ≤ β ≤ γ < |X| are integers, the fis are 1-tensors, and the Gis are 2-tensors on X.

Consider the subspace V orthogonal to the vectors f1, . . . fα, that is

V := 〈f1, . . . , fα〉⊥ =

{
v : X → F :

∑
x∈X

v(x)fi(x) = 0 for all i = 1, . . . , α

}
.

Let v ∈ V be a vector with support Sv = {x ∈ X : v(x) 6= 0} that is as large as possible. Then

|Sv| ≥ dimV = |X| − dim 〈f1, . . . , fα〉 ≥ |X| − α.

Indeed, if |Sv| < dimV then the dimension |X| − |Sv| of the subspace {w ∈ FX : w(x) =
0 for all x ∈ Sv} is strictly larger than |X|−dimV , so it intersects V non-trivially. Hence there is
a non-zero vector w ∈ V such that w(x) = 0 for every x ∈ Sv and then the support of v + w ∈ V
is larger than |Sv|, contradicting the maximality of Sv.

We will arrive at our final contradiction through examining the rank of the 2-tensor Q, defined
by Q(y, z) :=

∑
x∈X v(x)M(x, y, z), on the support Sv of v. Substituting the definition of M and

exchanging the sums, we can write Q as a sum of γ − α slices:

Q(y, z) =

α∑
i=1

Gi(y, z)
∑
x∈X

fi(x)v(x) +

β∑
i=α+1

fi(y)
∑
x∈X

v(x)Gi(x, z) +

γ∑
i=β+1

fi(z)
∑
x∈X

v(x)Gi(x, y)

=

β∑
i=α+1

fi(y)hi(z) +

γ∑
i=β+1

fi(z)hi(y),

for some 1-tensors hi. In the second equality we used that v is orthogonal to every fi, 1 ≤ i ≤ α.
We have thus shown that the (slice) rank of Q is at most γ − α.

On the other hand direct substitution contradicts this. We have Q(y, z) =
∑
x∈X v(x)M(x, y, z) =

0 whenever y 6= z since M is diagonal. For y ∈ Sv we have Q(y, y) =
∑
x∈X v(x)M(x, y, y) =

v(y)M(y, y, y) 6= 0. Consequently Q is a diagonal matrix with non-zero entries in the diagonal so
its rank is its order |Sv| ≥ |X| − α > γ − α, a contradiction.

Remark. Alon, Shpilka and Umans [1] showed in 2011 that the Erdős-Szemerédi Conjecture
follows from the solution of the Capset Problem. It is this implication through which the Sumflower
problem was resolved when Ellenberg and Giiswijt solved the Capset Problem in 2016. The concept
of slice rank was distilled from the paper of Croot, Lev, and Pach by Tao in his blog [7]. The proof
of we presented here is based on the paper of Naslund and Sawin [6] who applied the slice rank
lemma straight to the Sunflower Problem and obtained a better numerical value for the base of the
exponent than one that follows through the Alon, Shpilka and Uman simplication. Alon, Spilka,
and Umans also established the connection of these problems to the computational complexity of
matrix multiplication.
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