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In this chapter we switch from studying constraints on the set operation intersection, to constraints
on the set relation containment. While of course the two are strongly related (A ⊆ B if and only
if A ∩Bc = ∅), the flavour of the problems will be quite different.

The origon of all results in this chapter is Sperner’s Theorem, which was proved in the Classics
section. Just to recall, it stated that the size of the largest antichain in the Boolean poset is equal
to size of (one of) the middle layer(s), that is,

(
n
bn/2c

)
. Sperner’s Theorem is a consequence of a

stronger, weighted inequality called the LYM Inequality, stating that∑
F∈F

1(
n
|F |
) ≤ 1,

for any antichain F ⊆ 2[n],

In this section first we discuss a couple of beautiful “ground-set-independent” generalizations of
Sperner’s Inequality, which were motivated by extremal graph theory problems. In the second
section we will start off with the characterization of extremal constructions for Sperner’s Theorem.

1 Set-pair inequalities

1.1 The Bollobás Set-Pair Inequality

Theorem 1.1 (Bollobás, 1965). Let A1, A2, . . . , Am and B1, B2, . . . , Bm be two sequences of finite
sets, such that:

(i) For all 1 ≤ i ≤ m, Ai ∩Bi = ∅.

(ii) For any i 6= j, Ai ∩Bj 6= ∅.

Then
m∑
i=1

1(|Ai|+|Bi|
|Ai|

) ≤ 1.

Corollary 1.2 (Uniform version). If additionally to (i) and (ii), we have

(iii) |Ai| = k and |Bi| = `,

then m ≤
(
k+`
k

)
.

Claim 1.3. Theorem 1.1 implies the LYM inequality.

Proof. Let F = {F1, . . . , Fm} ⊆ 2[n] be an antichain. Set Ai = Fi and Bi = [n] \ Fi = F ci . To
verify conditions (i) and (ii) note that Ai ∩ Bj = Fi ∩ F cj = ∅ is equivalent to Fi ⊆ Fj , which
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happens if and only if i = j since F is an antichain. Therefore, by Theorem 1.1, we have

∑
F∈F

1(
n
|F |
) =

m∑
i=1

1(|Ai|+|Bi|
|Ai|

) ≤ 1,

where the equality follows from the fact that |F |+ |F c| = n.

Our proof of the Bollobás set-pair inequality is a generalization of the double-counting proof we
gave for Sperner’s Theorem in Chapter ??. Not to get bored, here we formulate our argument in
probabilistic terms.

Proof of Theorem 1.1. Let X =
⋃m
i=1 (Ai ∪Bi) be our (finite) ground set. Let π : X → [|X|] be a

uniformly random permutation of X. Let Ei be the event

Ei = {π : maxπ(Ai) < minπ(Bi)} ,

that is, that the last element of Ai appears before the first element of Bi. Clearly, the event Ei
only depends only on the relative positions of π(Ai) and π(Bi) within π(Ai ∪Bi) and has nothing
to with any other value of π (in fact, the ground-set-freeness of the theorem is made possible by
this). Formally, conditioning on any fixed injection π′ : X \ (Ai ∪Bi)→ [|X|] providing the values
of π on X \ (Ai ∪Bi), the probability of Ei is always the same:

P
(
Ei
∣∣ π|X\(Ai∪Bi) = π′

)
=
|Ai|! · |Bi|!
(|Ai|+ |Bi|)!

.

This is because (|Ai| + |Bi|)! is the number of ways π′ can be extended to a permutation of X,
and the number of ways the elements of Ai (or Bi) can be permuted in the first |Ai| (or last
|Bi|) positions of [|X|] \ π′(X \ (Ai ∪Bi)) is equal to |Ai|! (or |Bi|!). Hence P (Ei) is also equal to
|Ai|!|Bi|!

(|Ai|+|Bi|)! .

We show that the events Ei, 1 ≤ i ≤ m, are pairwise disjoint. Let i 6= j. Since by (ii) there is
an element x ∈ Ai ∩ Bj , we have that minπ(Bi) ≤ π(x) ≤ maxπ(Aj). Similarly minπ(Bj) ≤
maxπ(Ai). Consequently, if Ei happens then

minπ(Bj) ≤ maxπ(Ai) < minπ(Bi) ≤ maxπ(Aj),

so Ej does not happen.

Then the probability of the union is the sum of the individual probabilities:

1 ≥ P

(
m⋃
i=1

Ei

)
=

m∑
i=1

P (Ei) =
m∑
i=1

|Ai|! |Bi|!
(|Ai|+ |Bi|)!

=

m∑
i=1

1(|Ai|+|Bi|
|Ai|

) .

1.1.1 An application: saturated graphs

The Bollobás set pair inequality was motivated by an extremal problem arising from the algorith-
mic task of constructing an H-free graph on n vertices, with as many edges possible. Given an
integer n, a “forbidden” k-uniform hypergraph H, and an ordering of the edges of the complete
k-graph

(
[n]
k

)
, the Greedy Algorithm goes thorugh the k-sets in the given order, always adding

the next k-set e to the k-graph G it maintains, if this addition does not create a copy of H. This
edge-addition rule ensures that the output G of the Greedy Algorithm is an H-free k-graph on n
vertices. The question is how many k-edges the output has.
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If the input ordering happens to start with the the edges of an H-free graph with the maximum
number ex(n,H) of edges, then the algorithm will of course output exactly this k-graph. What
can we say about how bad the Greedy Algorithm can do? How small number of edges can an
output graph have?

A k-graph G is called H-saturated if it is H-free, but G ∪ {e} contains a copy of H for every k-set
e ∈

(
[n]
k

)
\ G. Note that a k-graph is H-saturated if and only if it is the output of the Greedy

Algorithm for some input ordering of
(
[n]
k

)
.

To measure how bad the Greedy Algorithm can do, we introduce the saturation number of the
k-graph H as follows,

sat(n,H) := min{|G| : G is H-saturated k-graph on n vertices}.

Note that any H-free k-graph with ex(n,H) edges is necessarily H-saturated, as the addition of
any non-edge makes the number of edges larger than ex(n,H), so by the definition of the Turán
number there must be a copy of H. Hence sat(n,H) ≤ ex(n,H), as sat is the minimum while ex
is the maximum number of edges over the same family of graphs.

Example: For the 2-graph K3 the Turán number is bn2/4c, that is quadratic in n. How small
is the satuaration number? The star graph K1,n−1 is K3-saturated and shows that sat(n,K3) is
not more than linear. In fact it is equal to n − 1, since any graph with n − 2 is disconnected, so
an edge connecting two components can be added and such an edge does not create a copy of K3.

The star construction for K3 can be generalized to arbitary k-uniform t-cliques. Considering a set
T ⊆ [n] of t− k vertices, form the k-graph G := {K : |K| = k, |K ∩ T | 6= ∅} of all k-sets having a
non-empty intersection with T . Such a k-graph is clearly K(k)

t -free, since every t-set has at least
k vertices outside of T and these form a k-set that is not in G. For every e 6∈ G however, T ∪ e is
a t-set with all its k-subsets, except e, contained in G. So G is K(k)

t -saturated. This generalized
star construction contains

(
n
k

)
−
(
n−t+k
k

)
hyperedges, since exactly those k-sets are not included

in it that are contained in the complement of T .

Next we use the set-pair inequality to show that this upper bound on sat(n,K
(k)
t ) is the best

possible for all values of the parameters.
Theorem 1.4 (Bollobás, 1965). For every n ≥ t ≥ k ≥ 2, we have that

sat(n,K
(k)
t ) =

(
n

k

)
−
(
n− t+ k

k

)
.

Proof. For the ≥-direction, let G be a K(k)
t -saturated k-graph on n vertices. Let e1, . . . , em ∈(

[n]
k

)
\ G be a list of all k-sets not in G. Then the addition any ei to G creates a copy of K(k)

t ; let
Ki be the vertex set of one of these t-cliques.

We use Corollary 1.2 with Ai = ei and Bi = [n] \ Ki. The condition Ai ∩ Bi = ∅ holds, since
ei ⊆ Ki. For i 6= j we have Ai ∩Bj = ei ∩ ([n] \Kj) 6= ∅. Indeed, otherwise Kj ⊇ ei in which case
G restricted to the vertex set Kj is missing not only the k-set ej , but also ei, a contradiction.

Since |ei| = k and |Ki| = n − t for every i =, 1 . . . ,m, Corollary 1.2 is applicable and gives
m ≤

(
k+n−t
k

)
.

A surprising feature of the Theorem is the precise determination of the minimum number of edges
in an n-vertex K(k)

t -saturated graphs for every value of the parameters. Compare this with our
knowledge when we aim to determine the maximum instead: the Turán number is not know, even
asymptotically, for any n ≥ t ≥ k ≥ 3.

For k = 2, i.e. for the graph case, the Turán number is known precisely and its value is quadratic
in n for every constant t ≥ 3. The saturataion number on the other hand is

(
n
2

)
−
(
n−t+2

2

)
= ... is

only linear in n. So the Greedy Algorithm can perform very badly in comparison to the maximum.
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1.2 The Lovász Set-Pair Inequality

1.2.1 Weakly saturated graphs

An alternative greedy way to construct H-free k-graphs is to do everything backwards: start from
the complete k-graph on n vertices, go through its k-sets in a given order, leaving out the next
edge if it is contained in a copy of H. After this Reverse Greedy Algorithm is finished considering
all edges, the resulting k-graph is H-free.

How well does this algorithm perform? Again, it depends on the input ordering of the k-sets.
Putting the edges of an H-free graph with ex(n,H) edges to the end of the order ensures that the
algorithm outputs exactly this extremal graph. How bad can the Reverse Greedy Algorithm do?
A short moment of contemplation will convince us that RGA cannot perform better in the worst
case than GA.

A k-graph G on vertex set [n] is called weakly H-saturated if it is H-free and there exists a sequence
e1, . . . , em ∈

(
[n]
k

)
\ G of the k-sets not in G, such that for every i = 1, . . . ,m the addition of ei to

G ∪ {e1, . . . , ei−1} creates a new copy of H.

An H-saturated k-graph G is also weakly H-saturated, since for any ordering e1, . . . , em of the
k-sets in

(
[n]
k

)
\ G each k-set ei creates a copy of H already together with just the edges in G (and

it does not need the “help” of the further k-sets e1, . . . , ei−1).
Claim 1.5. A k-graph G on vertex set [n] is the output of the Reverse Greedy Algorithm for some
ordering of the edges if and only if it is weakly H-saturated.

Proof. If G is weakly H-saturated, then let e1, . . . , em be the appropriate ordering of the k-sets
outside of G, given by the definition. Putting these k-sets at the beginning of the input ordering
in reverse order will make RGA to delete each of them, since each ei participates in a copy of H
together with the edges in G ∪ {e1, . . . , ei−1}. After deleting all these k-sets, RGA ends up with G
and does not delete any more k-sets, since G is H-free.

Let now G be a k-graph that is the output of RGA for some ordering of
(
[n]
k

)
. Let e1, . . . , em

be the edges that were deleted by RGA, in reverse order. Then the reason ei was deleted by
RGA is that it participated in a copy of H with the edges still present. These edges are exactly
G ∪{e1, . . . , ei−1}, since em, . . . , ei+1 were already deleted and the edges of G are kept throughout.
Hence G weakly H-saturated.

Consequently the worst case behaviour of the Reverse Greedy Algorithm can be measured by the
extremal number

wsat(n,H) = min{|G| : G is weakly H-saturated on n vertices}.

By the above
wsat(n,H) ≤ sat(n,H) ≤ ex(n,H).

Example. For H = K3 the weak saturation number is the same as the saturation number n − 1,
because any graph with less than n− 1 edges is disconnected. Indeed, if G was disconnected and
weakly K3-saturated, with an appropriate ordering e1, . . . em of its non-edges, then the first edge
ei between two of G’s components does not create a K3 in E(G)∪ {e1, . . . , ei−1}, a contradiction.

It turns out that the two saturation numbers of cliques are equal for all values of the parameters.
Theorem 1.6 (Lovász, 197?). For every n ≥ t ≥ k ≥ 2, we have

sat(n,K
(k)
t ) = wsat(n,K

(k)
t ).
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Proof. Let G be a weakly K(k)
t -saturated k-graph on n vertices and let e1, . . . , em be an ordering

of the k-sets in
(
[n]
k

)
\ G, such that the addition of ei to G ∪ {e1, . . . , ei−1} creates a new copy of

K
(k)
t . Let Ki be the vertex set of this t-clique.

We try to mimic the proof of Theorem 1.4 using set pairs and see if anything goes wrong. We
define Ai = ei and Bi = [n] \ Ki for every i = 1, . . . ,m. Then again ei ⊆ Ki, so Ai ∩ Bi = ∅.
Now, however, Ai ∩ Bj = ∅, that is ei ⊆ Kj , does not immediately lead to a contradiction for
every i 6= j. For j > i for example, there is nothing wrong with the k-set ei being part of the new
t-clique created by ej on Kj , since it is using edges of G ∪ {e1, . . . , ej−1}, of which ei is part of.
We can conclude a contradiction though for j < i, when ej should create the new t-clique on Kj

together with some edges of G ∪ {e1, . . . , ej−1}, of which ei is not part of.

We resolve this situation with a new skew set-pair criterion, Theorem 1.7, which gives the same
conclusion as Corollary 1.2, but under a weaker assumption (ii), requiring that Ai ∩ Bj 6= ∅ for
every j > i only.

Theorem 1.7 (Lovász, 197?). Let A1, A2, . . . , Am and B1, B2, . . . , Bm be two sequences of finite
sets, such that:

1. |Ai| = k and |Bi| = ` for every i = 1, . . . ,m,

2. Ai ∩Bi = ∅ for all 1 ≤ i ≤ m,

3. Ai ∩Bj 6= ∅, for any i > j,

Then
m ≤

(
k + `

k

)
.

Remark. The uniformity assumption in the statement is essential. The skew analogue of Theo-
rem 1.1 is not true. (HW)

The statement of Theorem 1.7 was conjectured already by Bollobás, but its proof took some
time to be found. Most likely since it probably had to be vastly different from the combinatorial
argument for Theorem 1.1.

1.2.2 Proof of the Lovász set-pair inequality

The main challenge, again, is to accommodate the ground-set-free nature of the statement. In the
proof of Theorem 1.1 this was achieved via conditioning in the probability space. Here we give
a proof using linear algebra. In our linear algebraic proofs so far we have associated coordinates
with the vertices and gave a bound on the dimension that obviously had to depend on the number
of coordinates. Now we will work in a space with dimension depending on the uniformity k, and
identify the elements of our ground set ∪mi=1(Ai ∪ Bi) =: X with vectors such that any k + 1 of
them are linearly independent.

A set of vectors S ⊆ Fd is said to be in general linear position if any d vectors from S is linearly
independent.

Within a set of vectors in general linear position there is no linear dependence beyond what is
absolutely necessary due to the dimension of the space these vectors live in. Fortunately for any
dimension d there exists a large set of vectors that is in general linear position. In particular
the point set {(1, α, α2, . . . , αd−1) ∈ Fd : α ∈ F}, the so-called moment curve, provides a set of
|F| vectors in general linear position. Any d vectors (1, αi, α

2
i , . . . , α

d−1
i ), i = 1, . . . , d, from the

moment curve are linearly independent, since the determinant of the matrix formed by them as
row vectors is

∏
i<j(αi − αj) 6= 0 (the Vandermonde determinant).
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Proof of Theorem 1.7. We will work over the field of reals, so it is possible to associate a vector
vx ∈ Rk+1 to each vertex x ∈ X. For each Ai we consider the subspace Vi generated by the vectors
vx associated with the elements x of Ai. Due to the general linear position of these vectors, the
dimension dimVi = k. Hence the orthogonal complement V ⊥i is 1-dimensional. We associate with
the index i ∈ [m] an arbitrary non-zero vector ui from this orthogonal complement. It turns out
that orthogonality to ui characterizes containment in Ai.

Key Observation uj · vy = 0 if and only if y ∈ Aj.

Indeed, uj · vy = 0 ⇐⇒ vy ∈ Vj ⇐⇒ {vx : x ∈ Aj} ∪ {vy} is linearly dependent ⇐⇒ y ∈ Aj
(otherwise the linear dependence of the vectors vy and vx, x ∈ Aj would contradict the general
linear position assumption).

For each i we define the polynomials

fi(x) =
∏
y∈Bi

x · vy =
∏
y∈Bi

((vy)1x1 + · · ·+ (vy)k+1xk+1) .

For these polynomials fi and the vectors ui, the determinant criterion (Lemma ??) hold. The
substitution fi(uj) = 0 if and only if there is a y ∈ Bi such that uj · vy = 0. This, by our Key
Observation, is equivalent with the existence of y ∈ Bi for which also y ∈ Aj . In other words, if
Bi ∩Aj 6= ∅.

So the skew conditions of our theorem translates to the substitution matrix (fi(uj))i,j being upper
triangular with non-zero diagonal entries. Lemma ?? then implies the linear independence of the
polynomials f1, . . . , fm.

These polynomials live in the space of homogeneous polynomials of degree `. Each such polynomial
is the sum of terms of the form cα1,...,αk+1

∏k+1
i=1 x

αi
i , where α1+ · · ·+αk+1 = `. This is exactly the

problem of partitioning ` indistinguishable items into k+1 distinguishable boxes. The number of
such partitions is

(
`+k+1−1

`

)
. This is the dimension of our space of polynomials, and hence it is an

upper bound on the number m of linearly independent polynomials we found in the space.

Remark Considering that Theorem 1.7 is also a generalization of Sperner’s Theorem, we now have
proved this fundmental result using combinatorial, probabilistic, and linear algebraic concepts.
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