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1 The Borsuk�Ulam Theorem

In this section we shall see another kind of application of the topological method in combinatorics
� we shall use a purely topological theorem, the Borsuk�Ulam Theorem, to prove Kneser's Con-
jecture, an entirely combinatorial result. This is a famous result, having given birth to topological
combinatorics, and we begin by introducing the conjecture.

1.1 Kneser's Conjecture

Recall the Erd®s�Ko�Rado Theorem: when n ≥ 2k, the size of a k-uniform intersecting family of
subsets of [n] is at most

(
n−1
k−1
)
. (a family is intersecting if any two members have a non-empty

intersection). This is tight: any star, the family of all k-subsets containing a �xed element, has
size exactly

(
n−1
k−1
)
.

Let us reformulate this in terms of an important classic graph, the Kneser graph KG(n, k).

De�nition 1.1 (Kneser graph). Given integers n ≥ k ≥ 1, the Kneser graph KG(n, k) has

V (KG(n, k)) =
(
[n]
k

)
, the set of all k-sets of n, with E(KG(n, k)) = {{A,B} : A ∩B = ∅}.

For a couple of quick examples, observe that if n < 2k, then there are no disjoint pairs, so
KG(n, k) consists of

(
n
k

)
isolated matchings. If n = 2k, then we have a perfect matching on

(
2k
k

)
vertices, with complementary pairs connected. These graphs are not new to us either � KG(5, 2)
is better known as the Petersen graph.

What does the Erd®s�Ko�Rado Theorem tell us about the Kneser graph? A family F ⊆
(
[n]
k

)
is intersecting if and only if it forms an independent set in KGn,k, and therefore the theorem says
that when n ≥ 2k, α(KG(n, k)) =

(
n−1
k−1
)
.

What did we always do when we studied the independence number of some nice graph or
hypergraph? We also looked at the chromatic number, which is related through the fundamental
inequality χ(G) ≥ v(G)/α(G). For example, when n ≥ 2k, this shows the chromatic number of
KG(n, k) is at least

(
n
k

)
/
(
n−1
k−1
)

= n/k. How good is this lower bound?
We start by looking back at our examples. When n < 2k, the Kneser graph is the empty

graph, so its chromatic number is 1. For n = 2k, KG(2k, k) is a perfect matching, so its chromatic
number is 2. When n = 2k + 1, then we get the so-called Odd-graph. This is already more
complicated, with lots of mysteries. It is (k + 1)-regular, but what other properties does it have?
For example, when k = 1, the Odd graph is just the triangle K3, so its chromatic number is three.
When k = 2, we get the Petersen graph. This has a 5-cycle, and hence is not bipartite. It is,
however, possible to color it with three colors. So its chromatic number is also three. Applying the
lower bound via the independence number to the odd graphs, we get that the chromatic number
is at least dn/ke = d(2k + 1)/ke = 3. So far, so good.

However, we have only checked the cases k ≤ 2. Can we color any Odd-graph with three colors
properly? How should we start? We can start, like in case of the Petersen graph, by coloring a
maximum independent set with one color: a star, say containg the vertex 1. How to continue? We
could use one color on the next star, the sets containing 2 but not 1. And so on. The last star we
would need to take is the one having the k-sets containing n− k + 1. This has only one member,
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{n − k + 1, n − k + 2, . . . , n}; all other k-sets have smaller minimum element. However, observe
that we could save some colors by collapsing some of the smaller stars into one intersecting family:
over any (2k − 1)-element vertex set, any two k-sets intersect. So we could take all k-subsets of
the (2k − 1)-element set [3, 2k + 1] and that will be independent. Thus we can indeed color any
odd graph with just three colors.

What can we say for general Kneser graphs? We could start with the same trick, taking stars
up to the element n − 2k + 1 and then all k-subsets of the set [n − 2k + 2, n]. This is a proper
(n−2k+2)-coloring. In 1955 Kneser introduced Kneser graphs and conjectured that this coloring
is optimal.

Conjecture 1.2. For every n ≥ 2k, we have χ(KGn,k) = n− 2k + 2

Note that we have already veri�ed this theorem whenever n = 2k and 2k+ 1. The general case
turned out to be much more di�cult. The �rst proof was given by László Lovász. The signi�cance
of this proof cannot be overestimated, as it initiated the �eld of topological combinatorics. Within
a week of the �rst proof, a second proof was given by Imre Bárány using the Borsuk�Ulam Theorem
and the Gale transform. Maybe the simplest possible argument using an appropriate variant of the
Borsuk�Ulam Theorem was given by Josh Greene in 2002, while he was an undergraduate student,
and this is the proof we will present here. Later, Matousek gave a proof using only Tucker's Lemma
� the combinatorial backbone of the Borsuk�Ulam Theorem. It is somewhat surprising that there
is no real topology-free proof of this seemingly entirely combinatorial statement.

In the next section we discuss and motivate the Borsuk�Ulam Theorem. Then we use it to
prove Lovász's Theorem.

1.2 The Borsuk-Ulam Theorem

De�nition 1.3. The d-dimensional sphere Sd ⊆ Rd+1 is given by

Sd =
{
x ∈ Rd+1 : x20 + x21 + · · ·+ x2d = 1

}
.

A pair {x,−x} ⊆ Sd is called antipodal.

The Borsuk�Ulam Theorem tells us that continuous maps from the d-sphere to d-space must
have a pair of antipodal points with the same image.

Theorem 1.4 (Borsuk�Ulam Theorem). If f : Sd → Rd is a continuous map, then there exists
some x∗ ∈ Sd such that f (x∗) = f (−x∗).

Remark 1.5. 1. This theorem has some real-world implications:

(a) In one dimension, there must be opposite points on the Equator with the same temper-
ature along an equator.

(b) In two dimensions, if we de�ate and �atten an in�atable ball, two antipodal points will
lie on top of each other.

(c) Still in two dimensions, given a point on the Earth's surface, let d be the distance to
the nearest McDonald's, and p be the probability of being hit by a meteorite. Then f :

Earth's surface →
(
d
p

)
is continuous (exercise), and so Borsuk�Ulam says there are

diametrically opposite points with the exact same distance to the nearest McDonald's
AND the same probability of being hit by a meteorite.

2. There are many equivalent formulations of the Borsuk-Ulam Theorem, as well as many di�er-
ent proofs (combinatorial, algebraic topological, etc.). We will see an appropriate equivalent
formulation in the next sebsection and some more in the homework.

While we will not prove the Borsuk�Ulam Theorem in full, we can at least prove the one-
dimensional case.
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Proof of 1-dimensional case. Create a map g : [0, π]→ R by

g (θ) = f (x (θ))− f (−x (θ)) , where x (θ) =

(
cos θ
sin θ

)
.

g is then a continuous function with g(π) = −g(0). By the Intermediate Value Theorem, there
must be some θ∗ ∈ [0, π] with g(θ∗) = 0. Thus, if x∗ = x(θ∗), f(x∗) = f(−x∗).

1.3 A reformulation

The following theorem of Lusternik and Schnirelmann turns out to be equivalent to Theorem 1.4,
and will be more convenient for our application.

Theorem 1.6. If Sd = U0 ∪ U1 ∪ · · · ∪ Ud is a covering of the sphere with d + 1 sets, where for
1 ≤ i ≤ d, Ui is either open or closed, then for some 0 ≤ j ≤ d, Uj contains an antipodal pair.

Remark 1.7. 1. Note that there is no topological restriction on U0.

2. The topology used here is the subspace topology of Sd ⊆ Rd+1.

3. Antipodal points achieve the diameter of the sphere. The Theorem implies we cannot split
Sd ⊆ Rd+1 into d + 1 �nice� parts and decrease the diameter. This motivates Borsuk's
Conjecture, which we saw earlier in the course (in fact, it is rather Borsuk's Question: he
never conjectured it ...).

Proof of Theorem. Suppose the theorem is false. Let U0 ∪ U1 ∪ · · · ∪ Ud be a valid cover w/o any
part containing an antipodal pair.

De�ne f : Sd → Rd as

f (x) = (d (x, U1) , d (x, U2) , . . . , d (x, Ud)) ,

where d (x, Ui) = infy∈Ui
d (x,y) = infy∈Ui

‖x− y‖2 in Rd+1. Using the triangle inequality, one
can show that f is continuous.

By Borsuk-Ulam, there is some x∗ ∈ Sd such that f (x∗) = f (−x∗). We cannot have
{x∗,−x∗} ⊆ U0, as U0 has no antipodal pairs.

Therefore, WLOG,

x∗ ∈ U1.

⇒ d (x∗, U1) = 0

⇒ d (−x∗, U1) = 0

⇒ −x∗ ∈ Ū1,

where Ū1 is the closure of U1. If U1 was closed, U1 = Ū1, and so {x∗,−x∗} ⊆ U1. This would be
a contradiction.

Therefore, U1 is open. Observe that −U1 := {−y : y ∈ U1} is disjoint from U1, since U1 doesn't
contain antipodal pairs. So, Sd \ (−U1) is a closed set containing U1. Thus, Ū1 ⊆ Sd \ (−U1)
(since Ū1 is the intersection of all closed sets containing U1), and so −x∗ ∈ Sd \ (−U1), implying
−x∗ 6∈ −U1, and thus x∗ 6∈ U1. again giving a contradiction.

1.4 Proof of Kneser's Conjecture

We now prove Conjecture 1.2, using these topological tools.

Theorem 1.8 (Lovász). When n ≥ 2k, there is no partition of
(
[n]
k

)
into n− 2k + 1 intersecting

families.
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Proof (Greene, 2002). We want to show that for any partition
(
[n]
k

)
= F1 ∪ F2 ∪ · · · ∪ Fn−2k+1,

one of the parts Fi contains a disjoint pair of k-sets.
Recall that we say vectors {vi : 1 ≤ i ≤ n} are in general linear position in Rd+1 if any subset

of at most d+ 1 vectors is linearly independent. Let

xi =
vi

‖vi‖
∈ Sd ⊆ Rd+1.

We then say {xi : 1 ≤ i ≤ n} are in general position in Sd. In particular, any equator of Sd (the
intersection of Sd with a hyperplane containing the origin) contains at most d of the points xi.

Let {xi : 1 ≤ i ≤ n} be n points in general position in Sn−2k+1. Given y ∈ Sn−2k+1, let H (y)
be the open hemisphere centered at y.

Observation 1.9. z ∈ H (y)⇔ ‖z− y‖ <
√

2.

We can now de�ne a cover of the sphere Sn−2k+1. Let Ui, 1 ≤ i ≤ n− 2k + 1, be de�ned as

Ui =
{
y ∈ Sn−2k+1 : ∃F ∈ Fi such that ∀j ∈ F,xj ∈ H (y)

}
Let U0 = Sn−2k+1 \

(⋃n−2k+1
i=1 Ui

)
.

Claim 1.10. For 1 ≤ i ≤ n− 2k + 1, Ui is open.

Proof of Claim. Suppose y ∈ Ui. Then there is some set F ∈ Fi such that xj ∈ H (y) ∀j ∈ F ,
and so ‖xj − y‖ <

√
2 ∀j ∈ F .

Let ε = minj∈F
(√

2− ‖xj − y‖
)
> 0. Now if y′ ∈ Sn−2k+1 is such that ‖y − y′‖ < ε, then

for each j ∈ F , we have

‖xj − y′‖ ≤ ‖xj − y‖+ ‖y − y′‖
< ‖xj − y‖+ ε

≤
√

2,

and so xj ∈ H (y′) for all j ∈ F . Hence y′ ∈ Ui. Thus Ui is open.

By Theorem 1.6, some Uj , 0 ≤ j ≤ n− 2k + 1, contains an antipodal pair {y,−y}.

Claim 1.11. j 6= 0.

Proof. Observe that z ∈ U0 ⇐⇒ H (z) contains at most k−1 points xi. (If it contained k points,
they would form a set and so belong to one of the Fi, making z ∈ Ui instead.)

If y,−y ∈ U0, then both of their hemispheres contain ≤ k− 1 points and so at least n− 2k+ 2
points xi lie on the equator equidistant from y and −y (that is, Sn−2k+1 \ (H(y) ∪H(−y))),
contradicting the fact that the points are in general position.

Therefore, some Ui contains antipodal points {y,−y} for some i with 1 ≤ i ≤ n−2k+1. Thus,
H (y) contains {xj : j ∈ F} for some F ∈ Fi. But also, H (−y) contains {xj : j ∈ F ′} for some
F ′ ∈ Fi. Since the intersection of these open hemispheres is empty, we have that these points xj

are distinct, and this implies F ∩ F ′ = ∅.

2 Problems in Combinatorial Geometry

We close our course by discussing a few classic problems of Erd®s from combinatorial geometry.
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2.1 The problems

We have encountered already the unit distance graph UDd of the plane and estimated its chromatic
number. Now we investigate how dense can its �nite subgraphs be. In other words, among n points
in Rd, how many pairs can have distance 1?

For a point set P ⊆ R2, let u(P ) denote the number of pairs of points from P that are of
distance 1 from each other. Let u(n) = maxu(P ) denote the maximum possible number of pairs
at unit distance over all sets of n points in the plane. Erd®s posed the problem of determining
how u(n) grows with n.

Let us consider a few initial constructions. By taking the vertices of a regular n-gon with
sidelength 1, we have u(n) ≥ n. One does better by placing the points in an

√
n ×
√
n grid,

again with sidelength 1, which gives u(n) ≥ (2− o(1))n. A further improvement can be obtained
by shearing the grid into a

√
n ×
√
n triangular grid, so that one of the diagonals in each of the

previous squares also becomes unit length. We then have u(n) ≥ (3− o(1))n.

Figure 1: Unit distances in the square and triangular grids.

These constructions all give linear lower bounds. Can we do better? Erd®s had a key idea: if
we �nd a set of n points that de�ne very few distinct distances, then by the pigeonhole principle,
one of those distances must occur between many pairs. By rescaling the point set, we may assume
this distance is a unit distance, giving a construction with many unit distances.

This gives rise to the following related problem. For a set P ⊆ R2 of points in the plane,
let d(P ) denote the number of distinct distances between points in P , and let d(n) = min d(P ),
where the minimum is taken over all sets of n points in the plane. Our above reasoning with the
pigeonhole principle then gives:

Observation 2.1.

u(n) ≥
(
n
2

)
d(n)

.

The regular n-gon shows d(n) ≤
⌈
n−1
2

⌉
, again giving a linear bound. However, the following

result of Erd®s shows this is not the correct order of magnitude.

Theorem 2.2 (Erd®s, 1946). There is a constant C > 0 such that

d (n) ≤ Cn√
log n

.

By our observation, this implies u (n) ≥ cn
√

log n for some other constant c > 0.
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Proof. We again consider the
√
n ×
√
n (square) grid. Each point is of the form (x1, x2) with

xi ∈ [
√
n]. The distance formula gives us that for (x1, x2) , (y1, y2) we have (x1 − y1)

2
+(x2 − y2)

2 ∈
[0, 2n− 1].

This already shows the number of distances is at most 2n. However, we also see that the
distances that occur are the sums of two squares of integers. It is a number theoretic fact that
there are at most Cn√

logn
sums of two squares in [2n− 1], giving the upper bound on d(n).

Having shown that linear was not the correct order of magnitude for either problem, Erd®s
then conjectured that it was not too far o� � that while you may be able to improve by a
poly-logarithmic factor, you could not do polynomially better.

Conjecture 2.3 (Erd®s, 1946). When considering n points in the plane, we have:

1. d(n) = n1−o(1).

2. u(n) = n1+o(1).

Note that, by the Observation, the second conjecture implies the �rst (but not the other way
around).

These two natural questions of Erd®s are more than seventy years old and had a tremendous
impact on the �eld of combinatorial geometry. They are responsible for the introduction of several
new methods to the �eld.

So far we have only considered constructions. What can we say about the other direction?
Let us start with a lower bound on d(n). Let P be an arbitrary set of n points and �x two
arbitrary points p1, p2 ∈ P . Let `i be the number of distinct distances a point pi participates
in. Let us draw around pi `i circles of these radii. Then each of the remaining n − 2 points
are on one of the circles for both of these family of circles. There are `1`2 pairs of circles from
the two families and each pair can give rise to at most two intersection points. Since each of
the reamining n − 2 points are one of these intersections, we have 2`1`2 ≥ n − 2. That means
d(P ) ≥ max{`1, `2} ≥

√
(n− 2)/2 = Ω(n1/2).

This was the original lower bound of Erd®s. In the following decades the exponent has been
improved several times, from 1/2 to 2/3 to 3/4, to 4/5, to 6/7, and so on. Finally in 2010 Guth
and Katz have shown that d(n) ≥ cn

logn for some c > 0, thus proving Conjecture 2.3(i).
As we have mentioned, the unit distance problem is supposed to be more di�cult, as it implies

the distinct distance problem, and indeed, the results obtained so far suggest that it is. We proved
an upper bound of the order n3/2 in a homework in the Turán number section, by showing that
the (in�nite) unit distance graph is K2,3-free. This bound was very di�cult to improve, with only
some logarithmic factors being shaved o�, until the following bound of Spencer, Szemerédi and
Trotter.

Theorem 2.4 (Spencer-Szemerédi-Trotter, 1984). u (n) ≤ 4n4/3 + 1
2n.

Here we will prove this theorem with a surprising application of graph drawings. So �rst we
take a detour to introduce our tool.

2.2 Planarity and Crossings

We �rst recall the de�nition of a drawing of a graph from Discrete Math I.

De�nition 2.5. A drawing of a graph G = (V,E) consists of an injective map ϕ : V → R2

together with, for every edge e = {u, v} ∈ E, a curve γe : [0, 1]→ R2 with with γe (0) = ϕ (u) and
γe (1) = ϕ (v).

Recall that a planar graph is one that can be drawn without any pairs of edges crossing. We
formally de�ne a crossing in the following manner.

De�nition 2.6. A crossing of edges e 6= f is a point in R2 that is not a common endpoint of e
and f , but lies in γe ∩ γf .
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De�nition 2.7. A graph G is planar if it has a drawing in the plane without any crossings.

Euler's Formula, stated below, relates the number of faces, edges and vertices in a planar map.
As we have seen in Discrete Math I, this bounds the number of edges in a planar graph.

Theorem 2.8 (Euler, 1751; Descartes, 1639). A connected planar map with v vertices, e edges,
and f faces must satisfy v − e+ f = 2.

Corollary 2.9. If G is an n-vertex planar graph with m ≥ 3 edges, then m ≤ 3n− 6.

Proof. Consider a planar drawing (without crossings). If G is disconnected, add some edges to
get a connected planar map. By Euler's Formula, n−m+ f = 2.

Now we double count (edge, face) pairs where the edge is on the boundary of the face. Each
edge is on the boundary of at most two faces, while each face has at least three edges on its
boundary. This gives us that the number of (edge, face) pairs is at least 3f and at most 2m, and
so f ≤ 2

3m.
Substituting this into Euler's Formula, we have n−m+ 2

3m ≥ 2, or m ≤ 3n− 6.

Thus a graph with at least 3n−5 edges contains crossings. We will be interested in the number
of such crossings that must appear.

De�nition 2.10. The crossing number of a plane drawing of a graph is the sum over all pairs of
distinct edges of the number of crossings between those pairs. The crossing number of a graph G,
cr (G), is the minimum crossing number of a drawing of G.

Remark 2.11. cr (G) = 0 if and only if G is planar.

Note that we are counting crossings with multiplicity. If a point appears on many edges, we
count one crossing for each pair of those edges. If a pair of edges crosses 100 times, they contribute
100 crossings.

For example, consider the cycle C8, with all four diameters added. If these diameters are drawn
within the circle, all crossing at the center of the cycle, that drawing would have crossing number(
4
2

)
= 6. We could instead draw two diameters outside, and two inside, resulting in a crossing

number of only two.

2.3 Lower bounds on the crossing number

Our main tool will be a strong lower bound on the crossing number of a graph. We begin with a
�rst, weak, lower bound.

Claim 2.12. If G is an n-vertex m-edge graph, cr (G) ≥ m− 3n.

Proof. Induction on m.
Base case: m ≤ 3n gives that m− 3n ≤ 0, and the result follows trivially.
Induction step: m > 3n. Take an optimal drawing of G. By Corollary 2.9, this cannot be

planar, and so there exist edges e, f that cross. Let G′ = G\{e}. By the inductive hypothesis, we
have that cr (G′) ≥ m−1−3n. So, in our optimal drawing, there are at least m−1−3n crossings
not involving e, together with at least 1 crossing involving e, and so cr (G) ≥ m− 3n.

We now make some observations about where the crossings can take place in an optimal drawing
of a graph.

Claim 2.13. In an optimal drawing of G, there are no crossings between pairs of edges that share
a vertex.

Proof. Suppose not. Then there exists an optimal drawing where there exist edges e = {u, v} and
f = {u,w} that cross. Let x be the last crossing of e and f , starting from u and heading towards
v and w respectively. Let γe,1 be the curve of e from u to x, γe,2 be the curve of e from x to v,γf,1
be the curve of f from u to x, and γf,2 be the curve of f from x to w.
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We switch the paths to obtain a better drawing of G. Let γ′e = γf,1 +γe,2, and γ
′
f = γe,1 +γf,2.

Now, we slightly pull apart γ′e and γ
′
f at x. These curves no longer cross at x, implying the number

of crossings decreases. This contradicts the optimal of the original drawing.

Remark 2.14. This proof also shows that in an optimal drawing, any two edges e, f cross at most
once.

With these preliminaries in place, we will prove a much stronger lower bound on the crossing
number. The proof is a beautiful and surprising application of the probabilistic method, amplifying
the bound of Claim 2.12.

Lemma 2.15 (Crossing number inequality). Let G be an n-vertex, m-edge graph, where m ≥ 4n.

Then cr (G) ≥ m3

64n2 .

Remark 2.16. This shows cr (Kn) = Θ
(
n4
)
, since we always have the upper bound cr(G) =

O
((

m
2

))
. Determining the asymptotics of cr(Kn) remains an open problem.

Proof of Lemma. Fix an optimal drawing of G. Fix p ∈ [0, 1], whose value we shall determine
later. Let Gp be the random induced subgraph of G, where each vertex survives independently
with probability p.

Let X be the number of vertices in Gp, let Y be the number of edges in Gp, and let Z = cr (Gp).
By Claim 2.12, Z ≥ Y − 3X, and so Z − Y + 3X ≥ 0. Thus, we have that E [Z − Y + 3X] ≥ 0.
By the linearity of expectation, E [Z]− E [Y ] + 3E [X] ≥ 0. Now, we calculate:

E [X]: np, as each of the n vertices remains with probability p.

E [Y ]: The probability that any given edge survives is p2. By linearity of expectation, we have that
E [Y ] = mp2. (Note that linearity of expectation is important here, since edges that intersect
are not independent of one another.)

E [Z]: We can upper bound E [Z] by looking at the expected number of crossings that survive from
our �xed optimal drawing of G. By Claim 2.13, the two edges of every crossing involve four
distinct vertices, implying a crossing survives with probability p4. By linearity of expectation,
we have that E [Z] ≤ cr (G) p4.

Putting this all together,

0 ≤ E [Z]− E [Y ] + 3E [X] ≤ cr (G) p4 −mp2 + 3np,

and so

cr (G) ≥ m

p2
− 3n

p3
.

We now need to choose p to make this lower bound as large as possible. Some elementary calculus
suggests setting p = 4n

m . Note that this is at most 1 (and hence a valid probability), since m ≥ 4n.
Plugging this in gives

cr (G) ≥ m(
16n2

m2

) − 3n(
64n3

m3

) =
m3

64n2
.

2.4 Back to unit distances

For our grand �nale, we use the crossing number inequality to provide an upper bound on the
number of unit distances in a set of n points in the plane.
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Proof of Theorem 2.4. Fix an arrangement of n points with u(n) unit distances. Observe that two
points x1 and x2 are at unit distance if and only if x2 belongs to the unit circle with center x1,
and vice versa. For each xi, let di be the number of points on the unit circle around xi, i.e., the
number of unit distances it de�nes. Now, we can write

u (n) =
1

2

n∑
i=1

di.

We can now de�ne a graph G, whose vertices are the n points. For each xi, we go around the
unit circle around xi, adding an edge in G between the neighboring pairs of vertices on the circle.
For instance, if the vertices x1, x10, x5 are at unit distance from x3, appearing in that order on
the unit circle centered at x3, we add the edges {x1, x10}, {x10, x5} and {x5, x1} to G.

If there is only one point on the circle, we do not add any edges. If there are only two points
on a circle, we only add one edge between them. Thus a circle with di points contributes at least
di − 1 edges to G. It is possible that an edge comes from two di�erent circles, but not three or
more, since there cannot be three points that are all at unit distance from both endpoints of the
edge. We remove any multiple edges from G, leaving us with

m := e (G) ≥ 1

2

n∑
i=1

(di − 1) .

Thus, we havem ≥ u (n)− 1
2n, or u (n) ≤ m+ 1

2n. Ifm < 4n, then u (n) < 4n+ 1
2n ≤ 4n4/3+ 1

2n,
and we are done.

So we may assume m ≥ 4n. By the crossing number inequality, we have cr (G) ≥ m3

64n2 .
However, we also have a drawing of G, using the circular arcs from the unit circles around the
points xi. In this drawing, every crossing is the intersection of two of these unit circles. There are
n unit circles, each pair of which can contribute at most two crossings. Thus, cr (G) ≤ 2

(
n
2

)
≤ n2.

Hence m3/(64n2) ≤ n2, or m ≤ 4n4/3, which implies u(n) ≤ 4n4/3 + 1
2n, as required.
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