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1 The Erdős-Turán Conjecture
In this section we return to the very origins of the Regularity Lemma. The story can be traced back
to a number theoretic conjecture of Erdős and Turán, whose motivation was to find “structured”
subsets within the set of positive natural numbers. What would be a natural first candidate
for a concept describing a “structured subset of the integers”? The set N has two quite different
arithmetic operations on it: addition and multiplication. Here we will deal with additive structures;
questions concerning multiplicative struture and the interplay of the two strutures also provide a
rich terrain of attractive problems.

The concept inherent to the additive structure of integers is the one of an arithmetic progression.
For given k ∈ N, a k-element subset S ⊆ Z of the integers is called a k-term arithmetic progression
or k-AP, if there is an integer a ∈ Z and positive integer d ∈ N such that S = {a, a + d, a +
2d, . . . , a + (k − 1)d}. Note that for our treatment here we require that d 6= 0, i.e., that an
arithmetic progression is not constant.

Being thoroughly trained in extremal combinatorics, we are immediately ready to ask the very
first question about the concept: how many integers would definitely force the existence of a large
additive substructure among them? Quantitatively, for integers k ≤ n, what is the smallest integer
s ∈ N, such that every s-subset of [n] contains an arithmetic progression of length k. Or, fomulated
in the negated language, we define

sk(n) := max{|S| : S ⊆ [n] is k-AP-free}.

Note that sk(n) is monotone increasing in k: s3(n) ≤ s4(n) ≤ · · · ≤ sk(n) ≤ · · · .
Erdős and Turán came up with the following construction of a large 3-AP-free set: the set

R ⊆ N0 of those numbers whose ternary expansion does not contain the digit 2. To see that this
set is 3-AP-free, let a, b, c ∈ R, such that a + b = 2c. So a, c, b, in this order, form a 3-AP. The
crucial observation is that when we perform the addition a+ b and c+ c of the numbers in their
ternary expansion, there is no “carry-over”, since all digits are 0 or 1. In 2c all digits are 0 or 2,
while if a and b are different, then in at least one digit we add a 0 to a 1, so the result is 1. In
conlcusion a+ b can only be equal to 2c if a = b = c, hence R is 3-AP-free.

How large is R ∩ [n]? Among the n = 3` integers between 0 and 3` − 1 there are 2` members
of S, so the size of S is 2log3 n = nlog3 2 ≥ n0.63.

HW Show that R is the 3-AP-free set we obtain with the following greedy procedure. Consider
the integers in increasing order and place the next integer into R if this does not create a 3-AP
with the elements that are already in R.

In terms of upper bounds Erdős and Turán strongly believed that s3(n) should be less than
linear in n, but were only able to show that s3(n) ≤

(
3
8 + ε

)
n. In other words they conjectured

that an arbitrary tiny, but positive constant fraction of the integers up to a large enough n should
contain an arithmetic progression of length 3 (and in fact of length k).1

1In their paper Erdős and Turán mention that George Szekeres went that far as to conjecture that the greedy
set of the Homework is the largest possible 3-AP-free set. This conjecture would have implied the existence of
infinitely many 3-APs consisting of prime numbers, but it turned out to be false.
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Conjecture 1.1 (Erdős-Turán, 1936). For every k ∈ N,

sk(n) = o(n).

While at the time of its posing the conjecture seemed just a modest request to say a somewhat
more meaningful upper bound, soon it turned out that nothing significantly better will ever be
possible. The following construction of Behrend improves the greedy construction above and
obtains a 3-AP-free sets whose size is larger than n to any constant power strictly less than 1 (say
n0.999).

Construction (Behrend, 1946)

s3(n) ≥ n
1−O

(
1√

logN

)
.

The idea is to use the “no-carry-over” property in the addition of two numbers with small
digits—but use it for some large b-ary expansion instead of the ternary (the one we used in the
greedy construction). For given integers n, b, and ` such that n = b` we consider the set S of
numbers whose b-ary expansion is of length at most ` and only contains digits less than b/2.

This set S ⊆ [0, n− 1] is then in a canonical one-to-one correspondence with the set of vectors

V :=

{
0, 1, 2, . . . ,

⌊
b− 1

2

⌋}`
.

For a vector ~x = (x0, x1, . . . , x`−1) ∈ [0, b−1]` we define the integer n~x :=
∑`−1
i=0 xib

i < n. Because
there is no carry-over in addition of two numbers from S, for any two vectors ~x, ~y ∈ V we have
n~x+n~y = n~x+~y. So if three numbers from S form a 3-AP, i.e. n~x+n~y = 2n~z, then we can conlcude
that n~x+~y = n2~z and in turn for the corresponding vectors we have ~x + ~y = 2~z. Hence our goal
will be to give a 3-AP-free subset of vectors, which will then translate back to a 3-AP-free subset
of integers.

In the greedy construction of Erdős and Turán ~x+~y = 2~z was enough to conclude the equality
of the vectors ~x, ~y, ~z and hence the equality of the numbers n~x, n~y, n~z. Here this is not true
anymore. For example, in base 5, we can take ~x = (1, 0), ~y = (1, 2) and ~z = (1, 1) (so n~x = 5,
n~y = 7 and n~z = 6). To this end we will not be able to keep the whole set V of vectors, but
will need to select a subset of it that is 3-AP-free. If three vectors form a 3-AP, then one is the
midpoint of the segment between the other two, in particular the three vector is on the same line.
Our limited geometric intuition suggests that a sphere for example intersects any line in at most
two points, so in particular it will also not contain a non-trivial 3-AP of vectors.

Let Sr := {n~x ∈ S : ‖~x‖ = r} be the intersection of S with the sphere of radius r. Then Sr is
3-AP-free, because if n~x + n~y = 2n~z for some ~x, ~y, ~z ∈ Sr, then ~x+ ~y = 2~z and

‖2~z‖ = 2‖~z‖ = 2
√
r = ‖~x‖+ ‖~y‖ ≥ ‖~x+ ~y‖ = ‖2~z‖.

Equality happens only if ~x and ~y are parallel. Since they are of the same length, we conclude
~x = ~y.

We will take the radius r for which Sr is the largest and bound its size by averaging. Since
~x ∈ [0, b− 1]`, we have ‖~x‖2 < `b2,
so there is a radius r for which

|Sr| ≥
|
⋃
i Si|√
`b

=
(b/2)l√
`b

=
b`−1

2`
√
`

For a given n, choose ` =
√
log n and b = n

1
` .

2 Roth’s Theorem and Szemerédi’s Theorem
Eventually the Erdős-Turán Conjecture was proved 1952 for 3-AP by Klaus Roth and was one of
the results in the citation2 of his awarding of the Fields Medal in 1958.

2The other result was Roth’s solution of the famous Thue-Siegel problem concerning the approximation to
algebraic numbers by rational numbers.
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Theorem 2.1 (Roth’s Theorem). For all ε > 0 there exists a positive integer N = N(ε) such that
for any n ≥ N and S ⊆ [n], |S| ≥ εn, there is a 3-AP in S.

Roth used the Hardy-Davenport circle method from analytic number theory for his proof. Here
we present a fully combinatorial proof that transfers the number theoretic problem into one in
graph theory.

Proof. Let S ⊆ [n] be a 3-AP-free set of size |S| ≥ εn.
We create a three-partite graph H = H(S) from S and use the Triangle Removal Lemma for

it.
V (H) = A ∪ B ∪ C, where A = {a1, . . . , an}, B = {b1, . . . , b2n}, C = {c1, . . . , c3n}. Edges

are defined as follows: aibj ∈ E(H) if j − i ∈ S, bjck ∈ E(H) if k − j ∈ S, and aick ∈ E(H) if
k − i ∈ 2S = {2s : s ∈ S}.

There is a large family of pairwise edge-disjoint trinagles in H: the triangles ai, bi+s, ci+2s are
pairwise disjoint for any i ∈ [n] and s ∈ S. Hence at least |[n]| · |S| ≥ εn2 ≥ ε

36v(H)2 edges must
be removed from H to make it triangle-free.

Let us apply the Triangle Removal Lemma for H with γ = ε
36 and receive a δ = δ(γ). From

what we showed above there has to be at least δ
(|V (H)|

3

)
triangles in H. However the triangles

shown above are all that there is in H. Indeed, if ai, bj and ck form a triangle, then j−i =: s1 ∈ S,
k − j = s2 ∈ S and s1+s2

2 = k−i
2 = s3 ∈ S form a 3-AP in S. So they must all be equal and

consequently i = j = k. Therefore the number of triangles in H is at most n|S| ≤ n2. This
number is less than 36δn3 = δ(v(H))3 providing a contradiction for n ≥ 1

36δ .
Hence the choice N(ε) = 1

36δ(ε/36) will be a good one.

Remark. The quantitative dependence of N(ε) on ε in the above proof is horrendously large, as
at the bottom there is the Regularity Lemma that we used to show the Triangle Removal Lemma.
From the Fourier analityc proof proof of Roth much better estimate follows.

Endre Szemerédi proved the conjecture for k = 4 in 1969 using combinatorics and Roth followed
up with a proof extending his analytic number theoretic method to 4-APs.

The full conjecture, for every k ∈ N was settled by Szemerédi in 1975 using combinatorial
ideas.

Theorem 2.2 (Szemerédi’s Theorem, 1975). For any integer k ≥ 1 and ε > 0 there is an integer
N = N(k, ε) such that any subset S ⊆ {1, . . . , N} with |S| ≥ εN contains an arithmetic progression
of length k.

Unlike many other famous conjecture, the story of this one did not end with its resolution.
Szemerédi’s Theorem inspired a lot of great new ideas and research in various, seemingly unrelated
fields of mathematics. In 1977 Furstenberg gave a proof using ergodic theory (which provided
no quantitative bounds). A third proof was given Gowers who managed to greatly extend the
analytic number theoretic method of Roth, using Fourier analysis together with combinatorics. In
the process he developed several important tools both in combinatorics and number theory that
later found many other applications. An extension of the combinatorial proof we have just seen
to arbitrary k, using an appropriate hypergraph regularity lemma and removal lemma, was given
by Rödl and Schacht and by Gowers in 2007. A fifth proof, using measure theory, was published
in 2012 by Elek and Szegedy.

The non-trivial methods that had to be developed in each of these disparate fields, to solve
the very same problem, underline the centrality of the orginal question. The whole story supports
what I would idealistically want to believe about the intrinsic unity of mathematics.

Szemerédi’s Theorem also had tremendous effect on further research in combinatorics and
number theory. It is for example a basic building block in the proof of Green and Tao that the
sequence of primes contains arithmetic progressions of arbitrary finite length.

Unfortunately the proof of Szemerédi’s Theorem, even for arithmetic progressions of length 4,
is waaay out of the league for our lectures. In the next section we will settle for something more
manageable, but still substantial and, most importantly, beautiful!
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3 Van der Waerden’s Theorem

3.1 Ramsey- vs. Turán-type problems
In a typical Turán-type problem we are looking for the largest subset of the base set, which does
not contain the sub-structure that we care not to have. This was the case in graph Turán-theory
when we were looking for the largest subset of E(Kn) which does not contain a copy of E(Kk) or
some other fixed graph E(H). And this was the case above in Szemerédi’s theorem when we were
looking for the largest subset of [n] which did not contain a k-AP.

In a typical Ramsey-type problem we are looking for partitions of our base set such that none
of the partition classes contain the substructure we care not to have. This was the case in graph
Ramsey theory, when we tried to partition (i.e. color) the edges of E(Kn) such that there is no
E(Kk) in any of the partition classes (i.e., there is no monochromatic Kk).

What is the Ramsey counterpart of Szemerédi’s theorem? It should talk about partitionings
(colorings) of [n] such that no part (color class) contains a k-AP. There is an obvious way how a
Turán type statement could somtimes imply a Ramsey-type statement. If the base set is colored
by r colors, then the largest color class is at least 1

r -fraction of the whole set. If the Turán
number of the structure is less then this, then it is sure that the largest color class does contain
a monochromatic forbidden substructure. In particular Szemerédi’s Theorem proves that for any
finite r ∈ N and k ∈ N, in any r-coloring of [n], where n is large enough that 1

r >
sk(n)
n (which

certainly will be the case for all large enough n), there is a monochromatic k-AP in the largest
color class.

Next we will show the weaker statement that claims the existence of a monochromatic k-AP
in some color class (not necessarily the largest).

Note that not every Turán-type statement implies the corresponding Ramsey statement. For
example in the Kk-problem the Turán result does not give any useful information about the
Ramsey result. Indeed, the Tur’an number of Kk is more than

(
n
2

)
/2, and from this we cannot

even conclude that any 2-colorings of E(Kn) contain a K3!
Recall our definition of the

(
k
2

)
-uniform “Subgraph”-hypergraph SG(2)(n,Kk) = SG(n,Kk),

defined on the set E(Kn) =: V (SG(n,Kk)) of edges of an n-clique as its vertex set and containing
a hyperedge corresponding to each k-clique in Kn. That is, formally,

SG(n,Kk) =

{(
K

2

)
: K ⊆ [n], |K| = k

}
.

With this notion in hand, the questions about symmetric Ramsey numbers could be expressed as
questions about the chromatic number of this special hypergraph. For example, R(k, k) ≤ n if
and only if χ (SG(n,Kk)) > 2.

A moment of thought reveals that he Turán number can be expressed as the independence
number of this hyper graph

α(SG(n,Kk)) = ex(n,Kk).

The relationship between Ramsey- and Turán-type problems is just the familiar inequality
between chromatic number and independence number:

χ(SG(n,H)) ≥
(
n
2

)
α(SG(n,H))

.

Hence an upper bound on the Turán-number (the independence number) leades to a lower
bound on the chromatic number, that translates to an upper bound on the Ramsey-number.

The hypergraph AP (n, k) of Szemerédi’s Theorem is defined on the vertex set V (AP (n, k) =
[n]. Edges are the k-APs:

AP (n, k) := {{a, a+ d, . . . , a+ (k − 1)d} ⊆ [n] : a, d ∈ [n]}.

The extremal function sk(n) is just the independence number and Szemerédi’s Theorem states
that for every k ∈ N we have α(AP (n, k)) = o(n).
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This implies an lower bound the chromatic number:

χ(AP (n, k)) ≥ n

α(AP (n, k))
→∞.

This implication is what we will show next.

3.2 Van der Waerden’s theorem
The Ramsey problem: if we r-color [n] will one of the color classes contain a k-AP?

In the children’s game TicTacToe the players two-color the three-by-three board. Labelling the
squares with integeres 1 through 9 appropriately, every winning set is a 3-AP (123, 456, 789,147,
258, 369, 159, 357), however not every 3-AP is a win.

Definition 3.1. Given r, k ∈ N, the van der Waerden number is defined as

W (r, k) := min{n : any r-colouring of [n] contains a monochromatic k-AP}

Exmaples: W (r, 1) = 1 and W (r, 2) = r + 1 by the Pigeonhole Principle.
The finiteness of W (r, k) is not clear a priori. Before proving it let us see a lower bound for

r = 2.

Proposition 3.2. W (2, k) >
√
2
k
k

1
4−o(1).

Proof. We use our investigations about Property B for the hypergraph AP (k, n). For that we need
count its edges. An arithmetic progression is fully determined by its first element and difference,
each of which must be selected from [n]. So |AP(n, k)| ≤ n2. We can apply the Radhakrisnan-
Srinivasan bound (that we proved by the method of Charkashin and Kozik). Since AP(n, k) is
k-uniform if its number of edges is less than 2kk

1
2−o(1) then the hypergraph is two-colorable.

Remarks
1. The correct asymptotics for the number of k-APs in [n] is n2

2(k−1) for any fixed k.

2. One can easily prove that W (r, k) > r
k−1
2 for any r, in a direct way, by considering a

random r-coloring of [n].

Theorem 3.3 (Van der Waerden, 1927). For every r, k ∈ N, the number W (r, k) is finite.

Remark This is the last highlight of our tour of Ramsey- and Turán-theory. After starting
out with Ramsey’s Theorem for cliques and studying hypergraph Ramsey-theory, we went on
to investigate Turán-numbers of graphs. Armed with our graph theoretic tools, we discussed a
Turán-type conjecture about arithmetic progressions. Now we come back a full circle and prove
its Ramsey-theoretic counterpart, van der Waerden’s Theorem, which, incidentally, is even older
than Ramsey’s Theorem we started with.

First we motivate the proof with an informal attempt to prove the case with two colors, red and
blue. Starting out slowly: to find a monochromatic 2-AP it is enough to consider the colors of 1, 2,
and 3. Indeed, either 2 has the same color as 1, producing a monochromatic 2-AP or it is different,
in which case the number 3 will form a monochromatic 2-AP either with 1 or 2. Let us say the
color of the monochromatic 2-AP a, a+ d1 we found in {1, 2, 3} is red. To find a monochromatic
3-AP, we first check what is the color of the integer a + 2d1, extending our monochromatic red
2-AP into a 3-AP. If this color is also red, then a + 2d1 completes a monochromatic 3-AP in
red. Otherwise we have found a 3-AP in {1, 2, 3, 4, 5} with the color pattern red, red, blue. If
we were able to find the same color pattern on a disjoint translate of our 3-AP, then we could
use some of these six numbers to find a monochromatic 3-AP we are seeking. Let us say that at
distance d from our original 3-AP the disjoint 3-AP a + d, a + d1 + d, a + 2d1 + d also has color
pattern red, red, blue. Then, depending on the color of the integer a+ 2d1 + 2d, we either have
a blue 3-AP of difference d starting with a+ 2d1, a+ 2d1 + d or a red 3-AP of difference d1 + d
starting with a, a+ d1 + d. The Pigeonhole Principle ensures that among the first 25 + 1 disjoint
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blocks of five consecutive integers there are two with identical color patterns and hence also the
appropriate translates of the appropriately colored 3-AP. So we find the monochromatic 3-AP in
the first 5 · (25 + 1) + 5 · 25 = 325 integers.

To find a monochromatic arithmetic progression of length 4, we can start by finding a monochro-
matic 3-AP {a, a+ d1, a+ 2d1} in any interval of 325, and check the color of the integer a+ 3d1
that extends it to a 4-AP. If this integer is of the same color than the 3-AP, we are done. Oth-
erwise, we find a 4-AP, with color pattern of the form, say, red, red, red, blue in an interval
of length

⌊
3
2 · 325

⌋
= 488. To be able to use the previous trick, we need not just one, but two

further pairwise disjoint translates of the very same 4-AP with the very same color pattern such
that these three copies of the 4-APs are regularly spaced, i.e. form a 3-AP (say with difference
d). Then we could again look at the color of the integer a + 3d1 + 3d and in both cases find a
monochromatic 4-AP ending on it. To find a 3-AP of identically colored blocks the Pigeonhole
Principle will not anymore do, but we need to use the van der Waerden number for 3-APs with
2488 colors. So before going on to attack the 4-AP theorem for two colors we need to settle the
3-AP theorem for many colors. Therefore the multicolor version of the van der Waerden Theorem
is not only a generalization for its own sake, but a necessity for this proof idea to go through.

Proof of van der Waerden’s Theorem. We proceed by induction on k to show that for every r ∈ N,
the van der Waerden number is finite. As we mentioned above W (r, 1) = 1 and W (r, 2) = r + 1
for every r ∈ N.

Let k ≥ 3 and let r ≥ 1 be arbitrary. By induction we can assume that W (r∗, k − 1) <∞ for
any r∗ ∈ N. To handle not only two, but r colors we will need not only two but r (k−1)-APs that
extend to a k-AP with the same integer. This motivates the following definition. We say that s
monochromatic (k − 1)-AP’s Pi = {ai + jdi : j ∈ [0, k − 2]}, i ∈ [s], are colour-focused on x ∈ Z,
if their colors are pairwise distinct and if x = ai + (k − 1)di for every i ∈ [s]. Note that that this
means that the integer x extends each (k − 1)-AP into a k-AP. The pairwise different colors of
the monochromatic (k− 1)-APs guarantee that either x extends one of them to a monochromatic
k-AP or a new colour to be used at x.

Definition 3.4. For positive integers r, k, and s ≤ r let

W (r, k, s) := min{n ∈ N : any r-coloring of [n] contains a monochromatic k-AP
or s color-focused (k − 1)-APs}.

Observe that W (r, k, 1) =W (r, k−1), since color-focussing does not pose any extra restriction
on a single monochromatic (k − 1)-AP.

Furthermore, k
k−1W (r, k, r) ≥W (r, k), since one of the r monochromatic (k− 1)-APs that are

color focussed on x ≤ k
k−1W (r, k, r) will have the same color as x and hence forms a monochromatic

k-AP with it.
We use induction on s to show that W (r, k, s) is finite for every s ≤ r. This will imply our

inductive statement for k since then k
k−1W (r, k, r) ≥W (r, k) is finite.

For s = 1 we have W (r, k, 1) =W (r, k − 1), which is finite by our induction on k.
We will show that for any s ≥ 1,

W (r, k, s+ 1) ≤ 2W (r, k, s)W
(
r2W (r,k,s), k − 1

)
=: ns+1.

This number is finite by our induction on s and by our induction on k (used for a huge number of
colors). Take any r-colouring of [ns+1] and split [ns+1] intoW

(
r2W (r,k,s), k − 1

)
intervals of length

2W (r, k, s) = 2ns. Each block can be coloured in one of r2ns ways. By the definition of the van
der Waerden number there are k − 1 blocks with the same color pattern, that form a (k − 1)-AP.
Let these blocks be [2ans+1, 2ans+2ns], [2(a+d)ns+1, 2(a+d)ns+2ns], . . . , [2(a+(k−2)d)ns+
1, 2(a + (k − 2)d)ns + 2ns]. Now consider the first half of the first block: [2ans + 1, 2ans + ns].
This is an r-coloured interval of length ns = W (r, k, s). By the definition of this number, if we
have no monochromatic k-AP, then we must have s color-focused (k−1)-APs in it. Say for j ∈ [s],
let Pj = {2ans + aj , 2ans + aj + dj , . . . , 2ans + aj + (k − 2)dj} be monochromatic (k − 1)-AP in
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color cj for j ∈ [s], such that the cjs are pairwise distinct and the Pj focus on the integer x, that
is x = 2ans + aj + (k − 1)dj for every j ∈ [s]. Observe that x ∈ [2ans + 1, 2ans + 2ns] is still in
the first block.

If the color of x is equal to any of the cj then x completes a monochromatic k-AP in that
color. Otherwise the color of x is a new color cs+1. Using the fact that in the other k − 2 blocks
the color pattern is the same, we find the translates of the Pj and x in each of these blocks, in
the same color as in the first one. We can now produce (s+ 1) monochromatic (k − 1)-APs that
are color focussed on the integer x + (k − 1)d. Indeed, there is a monochromatic (k − 1)-AP in
color cj when we take the ith element from the jth AP in the ith block: a2ns + aj , a2ns + aj +
dj + d, a2ns + aj + dj + 2d, . . . , a2ns + aj + (k − 2)dj + (k − 2)d is a monochromatic (k − 1)-AP
in color cj with difference dj + d, and its subsequent term a2ns + aj + (k − 1)(dj + d) is equal to
x+ (k− 1)d for every j ∈ [s]. Finally there is a monochromatic (k− 1)-AP in color cs+1 and with
difference d when we take the foci x + id of the color focused (k − 1)-APs in each of the k − 1
blocks.

This completes the induction step and hence the proof of our theorem.

Let us end this section with a couple of remarks on the bounds of the Van der Waerden
numbers. The above double-induction proof gives terrible bounds. For example:

W (2, 3) ≤ 2W (2, 3, 2) ≤ 2[2W (2, 3, 1)(22W (2,3,1)+1) = 2[2W (2, 2)(22W (2,2)+1)]] = 2[2·3(22·3+1)] = 780

when we know that in reality W (2, 3) = 9. Furthermore the proof gives W (3, 3) ≤ 1050099, but
W (3, 3) = 27.
In general, the obtained bound on W (2, k) grows faster than any tower. To have a sense how large
it is let us define the Grzegorczyk hierarchy of primitive recursive functions.

• g1(n) := 2n,

• gi+1(n) := gi(gi(· · · gi(gi(1)) · · · ))︸ ︷︷ ︸
n-times

Example: g2(n) = 2n, g3(n) = 22
..
.2︸ ︷︷ ︸

n-times
The upper bound one obtains from van der Waerden’s proof is roughly gk(k). It was considered

a breakthrough when Saharon Shelah in 1988 came up with a proof that provided a primitive
recursive upper bound: g4(k). In 2001 Timothy Gowers, as a corollary to his new analytic number

theoretic proof of Szemerédi’s Theorem, improved the upper bound to 22
22

2k+9

. Ron Graham
offers 1000$ to prove W (2, k) ≤ 2k

2

.
In terms of lower bounds Berlekamp in 1968 gave a monochromatic k-AP-free coloring of

[(k−1)2k−1] whenever k is a prime. The best general lower bound, valid for every large enough k,
is due to Zoltán Szabó (1990), who showed that for every ε > 0 and every k > k0(ε), W (2, k) > 2k

kε .
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