
What can not make the chromatic number small: the girth

Tibor Szabó

Extremal Combinatorics, FU Berlin, WiSe 2017–18

The chromatic number of graphs is one of the oldest, most-studied graph parameters - and one
of the computationally most difficult one. In the previous lectures we were concerned about how
the (small) number of edges can make the chromatic number of k-graphs small. Here we will
examine what does not make the chromatic number small. We will get a glimpse of how elusive
the chromatic number is when one tries to approach it through local properties of the graph.
The first and easiest lower bound on χ(G) is the clique number ω(G) of G. Obviously if there is a
clique of size k in a graph then any proper coloring of G must use at least k colors, one for each
vertex of the clique.
The other direction, that is χ(G) ≤ ω(G) is very far from being true in general. In other words,
the lack of (k + 1)-cliques does not make a graph k-colorable. A first example is C5, which has
clique number 2, but chromatic number 3. More generally, in the Discrete Math I course you
have encountered Myczielski’s Construction: a triangle free graph with chromatic number k, for
arbitrary k. That is, even the lack of triangles does not make the chromatic number small. 1

In a triangle-free graph the neighborhoods of each vertex is independent. This “local” information
was not enough to bound the chromatic number. Here we carry this further. We will consider
not only the neighborhoods of vertices, but neighborhoods of neighborhoods, and neighborhoods
of neighborhoods of neighborhoods, and beyond. What if we require from a graph that for every
vertex v, looking around in its iterated neighborhoods, all we can “see” from it within distance
100 is the tree rooted at v? There is no other, “extra” edge, an edge that would close a cycle (of
length at most 201). Can we then say something about the chromatic number of such a graph?
Can we bound it?
It turns out that we can’t. There exist graphs without any cycle of length at most 201, but having
chromatic number 10100. Such a graph locally looks like a tree, but yet its “global” structure must
be really complex, as one cannot color it properly with less than 1010 colors.
The girth of a graph G, denoted by g(G), is the length of its shortest cycle.

Theorem 1 (Erdős, 1959). For every k, l ∈ N there exists a graph G with g(G) ≥ ` and χ(G) ≥ k.

This theorem says that despite locally being as sparse as possible, a graph can still be convoluted
enough to have a large chromatic number. We will use a random graph to prove the xistence of our
construction with “positive probability”. However the uniform random graph G(n, 1/2) typically
produces a very dense graph, so it has way too many short cycles. So the ‘positive probability’
will be very tiny and our tools can not detect it. We thus will consider G(n, p), where each edge
appears independently, with probability p = p(n). With a tiny p, we likely get a much sparser
graphs and it will be easier to find graphs like what we’re looking for. Indeed, just as a sanity
check, let us see how many edges can a graph with girth g(G) have.

1Graphs G with the property χ(H) = ω(H) holding for every induced subgraph H ⊆ G are called perfect. (The
requirement that the χ = ω equality should be true not only for G but all induced subgraphs is there to avoid calling
graphs with artificially blown-up clique number perfect.) Perfect graphs are rare, yet remarkably beautiful objects,
with a rich history and connections to other fields of Discrete Mathematics. The Strong Perfect Graph Conjecture
of Berge was a driving force of structural graph theory for several decades until its resolution by Chudnovsky,
Robertson, Seymour and Thomas in 2006. It states the following characterization: a graph is perfect if and only if
it does not contain an induced odd cycle of length at least 5 or the complement of an induced odd cycle of length
at least 5. It is easy to see that none of these graphs are perfect, but the converse is a 178-page tour de force of
structural graph theory in the Annals of Mathematics.
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Theorem 2. If a graph G on n vertices contains no cycle of length less than g for some g ∈ N,
then

e(G) ≤ O
(
n1+

1
k

)
,

where k =
⌊
g−1
2

⌋
.

Proof. HW

Proof of Theorem 1. We sample a graph G ∼ G(n, p).

Short cycles: Let Xi be the number of cycles of length i, and let X =
`−1∑
i=3

Xi be the total

number of “short” cycles, cycles that we would not like to have in our final construction. To
compute their expected number, note that there are n(n−1)...(n−i+1)

2i ≤ ni

2i cycles of length i in Kn

(where 2i represents the number of automorphisms of Ci). The probability that any such fixed
cycle appears in G is pi (since Ci has i edges in it) and hence

E(X) =

`−1∑
i=3

E(Xi) ≤
`−1∑
i=3

(np)i ≤ (np)` − 1

np− 1
≤ (np)`,

where the last inequality is true if we have np ≥ 2. If we would take p = 2/n, or in fact any
constant times 1/n, we will get a low expected value for X, but the expected number of edges in
G(n, p) will be Θ(n), which is far too few for us to be able prove a large chromatic number.
Instead, our plan will be to choose a slightly larger p hence allowing a few number of these short
cycles and removing one vertex from each, but still keeping most of the vertices.
We choose p = nθ−1 with any θ, 0 < θ < 1/`, say θ = 1

`+1 . With this choice of p, the expected
number of short cycles is E(X) ≤ (np)` = nθ` � n. Then by Markov’s Inequality the probability
that G has more than n/2 short cycles is small:

P(X ≥ n/2) ≤ E(X)

n/2
≤ 2nθ`−1 → 0. (1)

Chromatic number via the independence number: We plan to bound the bound the chro-
matic number from below via the inequality χ(G) ≥ n/α(G) we covered in Discrete Math I. To
this end we need to bound α(G) from above. Our argument will be a straightforward union bound
applications (similar to our lower bound proof for the symmetric Ramsey number). For some
m = m(n)→∞,

P[α(G) ≥ m] = P[∃ independent I ⊆ V (G), |I| = m] ≤
∑

I⊆(V (G)
m )

P[I is independent] (2)

=

(
n

m

)
(1− p)(

m
2 ) ≤ nme−p

m(m−1)
2 =

(
ne−p

m−1
2

)m
→ 0 (3)

provided pm−1
2 > lnn. So let us take m =

⌈
3 lnn
p

⌉
=
⌈
3n lnn
nθ

⌉
.

Alteration: For our choices of p,m we have shown that for a large enough n, both P(X ≥ n/2) <
1/2 and P(α(G) ≥ m) < 1/2, where X is the total number of cycles of length at most ` − 1
in G. Thus, with positive probability, both X < 1/2 and α(G) < m hold. Hence, there exists
an n-vertex graph G∗ with less than n/2 short cycles and α(G∗) < m. Now delete one vertex
from each short cycle to obtain a graph G̃ ⊆ G∗ on at least n/2 vertices, with g(G̃) ≥ ` and
α(G̃) ≤ α(G∗) < m. Therefore,

χ(G̃) ≥ v(G̃)

α(G̃)
>
n/2

m
≥ n/2

d3n lnn/nθe
≥ nθ

7 lnn
≥ k

for n sufficiently large.
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What we have learned in this section is that local parameters, that is small clique-number or
large (but finite) girth will not force the chromatic number to be small. We can interpret this as
an indication that the chromatic number is a global parameter of graphs, one cannot derive any
information about it via knowledge of what happens on constant size vertex sets.
We also learned that (for hypergraphs at least) a global parameter like the number of edges can
force the chromatic number to be small. Some of the most famous open problems of graph theory
concern whether other, more global-looking generalizations of the clique number can cause the
chromatic number to be small.
An early question in this direction was Hajós’ Conjecture. One can define the topological clique
number ωtop(G) as the largest k such that there exists k vertices in G together with

(
k
2

)
pairwise

internally disjoint paths connecting each pair of the k vertices. Such a subgraph is called a
topological k-clique. Obviously a Kk cliques itself is also a topological k-clique. Hajós’ Conjecture
stated that ωtop(G) ≥ χ(G). In other words the lack of topological (k+1)-clique should imply that
the graph is k-colorable. This conjecture was proved to be true for k = 3 by Dirac, but eventually
turned out to be false in general, already for k = 6. As far as I know its status is open for k = 4
and 5.
A further weakening of Hajós’ Conjecture is Hadwiger’s Conjecture. For that let us define
ωminor(G) to be the largest k such that there is a Kk-minor in G (that is there exists k disjoint
vertex sets, each inducing a connected subgraph of G, such that any two of them are connected
by an edge). Obviously any topological k-clique is a Kk-minor. Hadwiger’s Conjecture states
that ωminor(G) ≥ χ(G). In other words Hadwigers Conjecture states that the lack of Kk+1-minor
should imply that the graph is k-colorable. This conjecture is known to be true up to k ≤ 5, with
the proofs of the last two cases being long and complicated. Hadwiger’s Conjecture is open for all
other values of k.
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