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Some inequalities and estimates

We review some of the basic inequalities and estimates that will be useful in this course.

Jensen’s inequalitiy: If f : R — R is a convex function, then for any x1,...,z, € R, we

have
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We often use the following two inequalities for simplifying expressions involving probabilities.
1—x<e™ forall x € R,

(1—p)">1—pn,forallpe|0,1] and n € N.

For estimating factorials and binomial coefficients, Stirling’s approximation is the most pow-

erful thing we have:
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But we usually use the following simpler estimates. Using (1 + 1/k)* < e for all k € N, we

can show that
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For binomial coeflicients we have
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Sometimes, the simple bound () > (n — k + 1)*/k! is also useful.

Lthis can be proved using Jensen’s inequality applied to some well-chosen functions



The middle binomial coefficient can be estimated as follows.
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Or, we can use Stirling’s approximation to see the truth
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Binomial coefficients and the entropy function
If k = Q(n), then we can estimate the binomial coefficient (}) as follows. Using Stirling’s
approximation, we can write
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Taking log on both sides, we get
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Since both k£ and n — k are linear in n, the terms involving them dominates, and we can
write
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where H(p) = —plogp — (1 — p)log(l — p) be the binary entropy function defined for all
p € (0,1). In particular, if & = cn, then we get
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