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Exercise 1 (1) For an integer r ≥ 2 and integers t1, . . . , tr ≥ 2, the number Rr(t1, . . . , tr)
is defined as the smallest positive integer n such that for every map c : E(Kn) 7→ [r], there
exists an i ∈ [r] and ti vertices in Kn such that for all edges e in the complete graph Kti

induced on these vertices, we have c(e) = i.
Alternatively, one can just write:

Rr(t1, . . . , tr) := min

{
n : ∀c : E(Kn)→ [r]∃i ∈ [r] ∃K ∈

(
V (Kn)

ti

)
∀e ∈

(
K

2

)
(c(e) = i)

}
.

(2) Let n = r1+
∑r

i=1(ti−2) and fix an arbitrary colouring c : E(Kn) 7→ [r]. Let k =
1 +

∑r
i=1(ti − 2). Let S0 = V (Kn) and arbitrarily pick v1 ∈ S0. Then there are rk − 1

edges of the form v1v, since |S0| = rk, each coloured with one of the r colours. Therefore,
by the pigeonhole principle there exists a colour c1 ∈ [r] and a set S1 ⊆ S0 \ {v1} such

that |S1| ≥ d r
k−1
r
e = rk−1 and c(v1v) = c1 for all v ∈ S1. Inductively, we construct for

every i = 1, . . . , k + 1 sets S0 ⊃ S1 ⊃ · · · ⊃ Si, vertices v1 ∈ S0, . . . , vi ∈ Si−1 and colours
c1, . . . , ci such that |Si| ≥ rk−i and c(vjv) = cj for all j ∈ {1, . . . , i} and v ∈ Sj. Given this,
we perform the induction step by picking an arbitrary vertex vi+1 ∈ Si, and a colour ci+1

for which the size of the inverse image c−1(ci+1) is of maximum size within the set of edges
{vi+1v : v ∈ Si \ {vi+1}}. Then the size of the set Si+1 := {v ∈ Si \ {vi+1} : c(viv) = ci+1} is

at least |Si|−1
r
≥ d rk−i−1

r
e, and by definition c(vi+1v) = ci+1 for all v ∈ Si+1.

By the k-th step we have vertices v1, . . . , vk, colours c1, . . . , ck, and a set Sk with |Sk| ≥
rk−k = 1. Let vk+1 be a vertex in Sk. Then by our process we have for all 1 ≤ i < j ≤ k+ 1,
c(vi, vj) = ci. Define a colouring c∗ : {v1, . . . , vk} 7→ [r] by c∗(vi) = ci ∈ [r]. Applying the
General Pigeonhole Principle, where the pigeonholes are defined by the inverse images of the
colouring c∗, and noting that k = 1 +

∑r
i=1(ti − 2), we have a colour ci ∈ [r] and a subset

T ⊆ {v1, . . . , vk} of size |T | = tci − 1 such that and c∗(v) = ci for all v ∈ T . Therefore,
T ∪ {vk+1} is a monochromatic clique of size tci in the colour ci.

Exercise 2 (1) Any 2-uniform hypergraph with at most 2 edges is a bipartite graph, and
hence two-colourable. Therefore, mB(2) > 2. The graph C3 (the triangle) gives rise to a
non-two-colourable 2-uniform hypergraph with 3 edges, proving that mB(2) ≤ 3. Therefore,
mB(2) = 3.
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(2) We first give an example of a 3-uniform hypergraph on 7 edges which is non-two-
colourable, proving that mB(3) ≤ 7. Consider the Fano plane (Draw!) and a proper two-
colouring of it. Let R be the set of vertices in the larger color class (say the red class), so
|R| ≥ 4. Fix an arbitrary vertex x ∈ R and look at the three edges through x. Each of them
can contain at most 1 other vertex of R since there is no red edge. Therefore, |R| ≤ 1+3 = 4,
so in fact we must have |R| = 4. This shows that every edge through an arbitrary red vertex
x must contain one more other red point. In particular no edge of the Fano plane contains
exactly one red vertex. Each pair of the 4 red vertices determines a unique edge of the
Fano plane, that is at most

(
4
2

)
= 6 edges could possible have a red vertex. Since the Fano

plane has 7 edges, one of these must be compltely blue, which is a contradiction. Hence,
the Fano plane is a 3-uniform hypergraph on 7 edges which cannot be two-coloured, proving
that mB(3) ≤ 7.

We now prove that every 3-uniform hypergraph on 6 edges can be two-coloured, which
will imply mB(3) > 6. Let H be such a hypergraph. Pick a uniformly random permutation
σ of the vertices of H and let v1, . . . , vn be the ordering of the vertices given by σ. Colour
these vertices in this order, always coloring blue, unless it is the last vertex of an edge in
which all the other vertices are already coloured blue, in which case colour the vertex red.
This colouring by definition does not contain any blue monochromatic edges. Moreover, it
can only colour an edge f red, if there exists an edge e 6= f such that the last vertex of e is
the first vertex of f . For arbitrary edges e, f of H, let Ee,f be the event that the last vertex
of e is the first vertex of f in the ordering v1, . . . , vn defined by the random permutation σ.
Then

Pr{there is a monochromatic edge} ⊆
⋃

e,f∈E(H)

Pr(Ee,f ).

Therefore, if Pr (∪e,fEe,f ) < 1, then there must exist an ordering of the vertices in which the
algorithm gives us a proper two-colouring. We will now prove this claim.

Note that

Pr(Ee,f ) =

{
0 if |e ∩ f | 6= 1
(3−1)!(3−1)!

(2·3−1)! = 1
30

if |e ∩ f | = 1.

Let k denote the number of pairs of edges (e, f) for which we have |e ∩ f | = 1. Then
Pr(∪Ee,f ) ≤ k/30, by the union bound. Now for the sake of contradiction assume that
this probability is equal to 1. Then we must have k ≥ 30. That means k = 30 and all of
the 6 · 5 = 30 (ordered) pairs of distinct edges intersect in exactly one vertex and Ee,f are
pairwise disjoint events. We show that this is impossible. Pick an edge e. Since e has 3
vertices, and there are 5 edges other than e, there must be a vertex v ∈ e and edges f and
f ′ such that e∩ f = e∩ f ′ = {v}. But then there is an ordering of the vertices in which v is
the last vertex of e which is the first vertex of f and also the first vertex of f ′, which shows
that Ee,f is not disjoint from Ee,f ′ , a contradiction.
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Exercise 3 (1) Let A,B be two disjoint sets of vertices of a graph G. Then the pair (A,B)
is called ε-regular if

|d(A,B)− d(A′, B′)| ≤ ε

for every A′ ⊆ A,B′ ⊆ B with |A′| ≥ ε|A| and |B′| ≥ ε|B|, where

d(S, T ) =
|{uv ∈ E(G) : u ∈ S, v ∈ T}|

|S||T |
.

(2) Suppose there exists a Y ⊆ A with |Y | ≥ ε|A| for which the set {x ∈ B : |N(x, Y )| ≥
(d − ε)|Y |} has cardinality less than (1 − ε)|B|. Then the set X = {x ∈ B : |N(x, Y )| <
(d − ε)|Y |} has cardinality at least ε|B|. Since A,B is an ε-regular pair, we must have
|d(X, Y )− d(A,B)| ≤ ε. On the other hand,

d(X, Y ) =

∑
x∈X |N(x, Y )|
|X||Y |

<

∑
x∈X(d− ε)|Y |
|X||Y |

= d− ε,

by the definition of X. This gives d(A,B)− d(X, Y ) > ε, contradicting the ε-regularity.

Exercise 4 Given a positive integer n and a graph H, ex(n,H) is the largest number of
edges that a graph G on n vertices can have without containing H as a subgraph.

Let G be an n-vertex graph that does not contain any C4, and has ex(n,C4) edges. Then
the minimum degree of G is at least 1, since if there was an isolated vertex in G then we can
add an edge between this vertex and any other vertex of G to obtain a larger C4-free graph,
contradicting the maximality of ex(n,C4).

Let S be the number of copies of K1,2 in G. For every vertex v, there are exactly
(
d(v)
2

)
copies of K1,2 with v as their middle vertex.Therefore S =

∑
v∈V (G)

(
d(v)
2

)
.

On the other hand for every pair of vertices u, v in G there is at most one copy of K1,2

having u and v as its leaves, because two such copies would create a copy of C4 in G. Hence
S is upper bounded by the number

(
n
2

)
of pairs of vertices of G.

This gives us ∑
v∈V

(
d(v)

2

)
≤
(
n

2

)
.

Applying Jensen’s inequality to the convex function f(x) = x(x− 1)/2 we get

n

(
d̄

2

)
≤

∑
v∈V (G)

(
d(v)

2

)
≤
(
n

2

)
,

where d̄ = (
∑

v∈V (G) d(v))/n denotes the average degree of G. Then we have

n− 1

2
≥
(
d̄

2

)
=
d̄(d̄− 1)

2
≥ 1

2
(d̄− 1)2,
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where in the last inequality we used that d̄ ≥ 1 (since the minimum degree is at least 1).
Expressing d̄ we get d̄ ≤

√
n− 1 + 1, which gives

e(G) ≤ nd̄

2
= O(n3/2),

by the Handshake Lemma.

Exercise 5 Denote the people of the town by elements of [n] = {1, . . . , n} and clubs that
they form by subsets S1, . . . , Sm of [n].

We create an auxiliary family S ′1 . . . S
′
m ⊆ [n + 1], where S ′i = Si ∪ {n + 1} and let

v1, . . . ,vm ∈ Fn+1
2 denote the characteristic vectors of S ′i.

(1) We show that this set family satisfies the conditions of the Oddtown Theorem (from
the lecture) and hence their number m is most the number n + 1 of points of the base set.
Indeed,

• since |Si| is even for all i, |S ′i| = |Si|+ 1 is odd for all i and

• since |Si ∩ Sj| is odd for all i 6= j, |S ′i ∩ S ′j| = |Si ∩ Sj|+ 1 is even for all i 6= j.

As a constriction, we can take the n − 1 sets Si := {i, n} ⊆ [n] for 1 ≤ i ≤ n − 1. Indeed,
|Si| = 2 is even for all i, and |Si ∩ Sj| = 1 is odd for all i 6= j.

(2) Let now n be odd. We claim that the family {S ′i : i = 1, . . . ,m} together with the
set S ′m+1 = [n] still satisfies the Oddtown rules and hence m + 1 ≤ n + 1, implying m ≤ n.
For that it is enough to check the new restrictions: |S ′m+1| = n is odd and |S ′m+1 ∩ S ′i| = |Si|
is even.

Taking Si := {i, n} for 1 ≤ i ≤ n− 1 and Sn = {1, . . . , n− 1} gives us a construction of n
clubs, such that |Si| is even for every i ∈ [n] and |Si∩Sj| = 1 is odd for every i, j ∈ [n], i 6= j.

Exercise 6 Let V = {v1, . . . , v8} denote the set of batteries. Then each trial can be de-
noted by a 3-element subset of vi’s. Let V0 = {v1, v2, v3}, V1 = {v4, v5, v6} and V2 = {v7, v8}.
Define E := {e ∈

(
V
3

)
: |e ∩ Vi| = 2 and |e ∩ Vi+1| = 1 for i ∈ Z/3Z} ∪ {V0, V1}. Then

|E| =
(
3
2

)
· 3 +

(
3
2

)
· 2 +

(
2
2

)
· 3 + 2 = 20. We claim that if E is the set of trials that Tajel

performs, then she can always ensure that she finds a working triple. So say Tajel has tested
all of these 20 triples. Let w1, w2, w3, w4 be the working batteries among the 8 ones. If
any three of these were placed in V0 or V1, then Tajel would have checked them and hence
gotten a working triple. Therefore, each Vi contains at most 2 of the working batteries.
Moreover, since there are four working batteries, there must exist an i ∈ Z/3Z for which
Vi contains exactly two working batteries, say w1, w2. Then if {w3, w4} ∩ Vi+1 6= ∅, Tajel
would have checked the triple {w1, w2, x} in her trials where x ∈ {w3, w4} ∩ Vi+1. Other-
wise {w3, w4} ∩ Vi+1 = ∅ and consequently we must have {w3, w4} ⊆ Vi−1. In this case the
triple {w3, w4, w1} is in E, and hence Tajel would have checked it. Thus we deduce that irre-
spective of how wi’s are distributed, Tajel would have found a working triple in these 20 trials.
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Remark The construction is in fact the complement of the construction we gave in the
lectures for the K

(3)
4 Turán problem. The strategy of Tajel is to build a 3-uniform hypergraph

on 8 vertices whose complement does not contain any copy of K
(3)
4 (the hypergraph formed

by taking all 3-subsets of a 4-set), which will ensure that for any four vertices there is a

triple that forms an edge of her hypergraph. Therefore any lower bound on ex(n,K
(3)
4 ) will

give an upper bound on the best that Tajel can do.
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