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1 Ramsey Theory
Pigeonhole Principle Given n pigeons in q pigeonholes, there has to be

• a pigeonhole with at least
⌈
n
q

⌉
pigeons, and

• a pigeonhole with at most
⌊
n
q

⌋
pigeons.1

Of course the Pigeonhole Principle (PP) just formulates simple general properties of any decent
“average”-concept: there should always be an instance that is at least the average and an instance
that is at most the average. For a formal proof, say of the first statement of the PP, one can
note that the negation is simply saying that all pigeonholes have strictly less than

⌈
n
q

⌉
, i.e. at

most
⌈
n
q

⌉
− 1 pigeons. This leads to a contradiction to all pigeons appearing in one of these q

pigeonholes, as q ·
(⌈

n
q

⌉
− 1
)
< n.

In the first part of our course we will take the Pigeonhole Principle to a whole new level while
studying both the quantitative and the qualitative aspects of Ramsey theory.

2 Ramsey’s theorem for graphs

2.1 Two-colour Ramsey numbers for cliques
• Warm-up problem from sociology

– How many people can be at a party without three mutual friends or three mutual
strangers?

– Make a graph: vertices = people, red edge = friends, blue edge = strangers ⇒ how
large can a two-coloured complete graph without monochromatic triangles be?

– Answer, part 1: at least 5: red graph is C5

– Answer, part 2: at most 5:

∗ Suppose we have six vertices, and consider the edges incident to the first one
∗ wlog (at least) three of these are red (where 3 =

⌈
5
2

⌉
; PP is used with the 5 incident

edges (pigeons) classified into 2 classes (pigeonholes) according to their color)
∗ if any two such endpoints share a red edge → red triangle, done
∗ therefore the endpoints of the three red edges span a blue triangle, done

1 Or saying the same more formally: if the elements of a set Q are classified into q pairwise disjoint subsets (i.e.
Q is the disjoint union of the sets Qi, i = 1, . . . q), then there is a subset Qj with |Qj | ≥

⌈
|Q|
q

⌉
elements and there

is a subset Q` with |Qe � | ≤
⌊
|Q|
q

⌋
elements.
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Definition 2.1 (Ramsey numbers). Given s ∈ N, let R(s) be the minimum n ∈ N such that every
red-blue colouring of the edges of Kn contains a subgraph isomorphic to Ks the edges of which all
have the same color (refered to as being monochromatic (or m.c., for short)).

• Observations

– We have just proved R(3) = 6

– Upper bound proof: finding a monochromatic clique in an arbitrary colouring
– Lower bound proof: construction of a specific colouring without monochromatic

cliques
– Often convenient to only consider red subgraph: cliques ↔ red cliques, independent

sets ↔ blue cliques
– Finiteness of R(42) for example is totally unclear at this point

Theorem 2.2 (Ramsey [2], 1930). For every s ∈ N, R(s) is finite.

• Philosophy: “every large system, no matter how chaotic, contains ordered subsystems"

• Quintessential Ramsey result — find monochromatic substructures in large coloured struc-
tures

• Ramsey: British logician, primarily interested in existence of R(s)

Claim 2.3. For every s ∈ N, R(s) ≤ 4s.

Proof. Let n = 22s, and fix an arbitrary red/blue edge-colouring c : E(Kn)→ {red, blue} of Kn.
We will find a monochromatic Ks.
To this end we first will find a sequence of vertices v1, v2, . . . , v2s−2 ∈ V := V (Kn), which is
right-monochromatic, by which we mean that for any fixed index i = 1, 2, . . . , 2s − 3, the edges
going from vi to a vertex vj with a larger index j have the same color. In other words for
any i = 1, 2, . . . , 2s − 3, there exists a color c∗(i) ∈ {red, blue}, such that c(vivj) = c∗(i) for
every j, i < j ≤ 2s − 2. Once we find such a right monochromatic sequence, we will be done.
Indeed, the PP provides us with a subsequence vi1 , . . . , vis−1

of length
⌈
2s−3

2

⌉
= s− 1, such that

c∗(i1) = · · · = c∗(is−1) and then the vertices vi1 , . . . , vis−1
, together with the last vertex v2s−2

form a monochromatic clique of order s (in color c∗(i1)).
So to complete the proof we just need to find this long enough right-monochromatic sequence.
We do this in a quite greedy fashion, using again the PP. We will keep picking the next vertex
arbitrarily from the set of vertices still under consideration, then deleting all neighbours whose
edges are coloured with the less frequently appearing colour, and note that we have at least half
of the vertices remaining. Formally, let us set S0 := V and for every i = 0, 1, . . . , 2s − 3 do the
following. Given a set Si of size 22s−i, we select an arbitrary vertex in Si, name it vi+1, and let
Bi+1 and Ri+1 denote the sets of those neighbors of vi+1 in Si which are connected to it via a
blue and a red edge, respectively. Then obviously |Bi+1|+ |Ri+1| = |Si| − 1. We choose Si+1 to
be the larger of Bi+1 and Ri+1, so for its size we have

|Si+1| ≥
⌈
|Bi|+ |Ri|

2

⌉
=

⌈
22s−i − 1

2

⌉
= 22s−(i+1),

as desired. To complete the proof we just need to check that this process can go on long enough,
i.e. v2s−2 can actually be selected. For that we need S2s−3 to be non-empty, which is the case
since |S2s−3| = 22s−(2s−3) = 8. (So in fact in the theorem we could have claimed the upper bound
4s/8 instead.)

Even though this upper bound is getting close to being a century old, the order 4s is still essentially
the best known. We will return to the question of how good these bounds are when we discuss
lower bounds in the next section; for now we see a couple of generalisations.
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Hungarian mathematicians Paul Erdős and George Szekeres came across the problem indepen-
dently (see their motivation two sections later), and obtained slightly better quantitative bounds.
For the improvement one can observe that the proof above was quite “wasteful” in the sense that
we always followed greedily the immediately best option, towards the larger monochromatic de-
gree, and then we completely ignored the fact that once we did that in some color, in that color it
is enough to find a clique of one smaller order. This makes the problem asymmetric after the first
step of the proof, because in the other color we still need to find a clique of same order as before.
To accommodate this asymmetry, the following definition is necessary.

Definition 2.4 ((not necessarily symmetric) Ramsey numbers). Given s, t ∈ N, let R(s, t) be the
minimum n ∈ N such that every red-blue colouring of the edges of Kn contains either a red Ks or
a blue Kt.

• Observations

– Swapping red/blue: ⇒ R(s, t) = R(t, s)

– R(s, 1) = 1, R(s, 2) = s.

The following upper bound of Erdős and Szekeres will be proved on the homework as a guided
exercise.

Theorem 2.5 (Erdős–Szekeres [1], 1935). For every s, t ∈ N, R(s, t) ≤
(
s+t−2
s−1

)
. In particular,

R(s) = O

(
4s√
s

)
.

2.2 Generalization 1: Ramsey’s theorem for infinite graphs
• What happens if we colour the edges of an infinite graph, instead of a large finite graph?

• Infinite graphs

– Vertex set N, Edge set
(N
2

)
– Colour every edge red or blue

• Finite monochromatic cliques

– In particular, for any t ∈ N by considering the restriction of the colouring to the edges
between the first R(t, t) numbers, we are guaranteed to find a monochromatic clique of
size t.

– Thus we definitely have arbitrarily large monochromatic cliques

• Infinite monochromatic cliques

– This is NOT the same as an infinite monochromatic clique
∗ These large finite cliques can be bounded and far apart

– Question: Do we get an infinite monochromatic clique?

Theorem 2.6 (Ramsey [2], 1930). For any two-colouring of
(N
2

)
, there exists an infinite set S ⊂ N

for which
(
S
2

)
is monochromatic.

Proof. One can repeat the vertex selection procedure in the proof of Claim 2.3 infinitely often and
hence create an infinite right-monochromatic sequence. The proof of this is identical to the one
there with the obvious adaptation that Si = Bi+1∪Ri+1 being infinite implies Si+1 being infinite.
And the infinite right-monochromatic sequence gives rise to an infinite monochromatic clique (as
at least one of the colors must occur infinitely many times among the c∗-values).

Homework: infinite Ramsey Theorem ⇒ finite Ramsey Theorem
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2.3 Generalization 2: Multicolour Ramsey numbers
In many applications the relation between people (or other entities) are not necessarily binary.
After all, there must be more to human (or other) relations than love and hate. For this reason
the following definition arises quite naturally.

Definition 2.7 (Multicolour Ramsey numbers). Given integers r ≥ 2 and t1, t2, . . . , tr ∈ N, let
Rr(t1, t2, . . . , tr) be the minimum n ∈ N such that for any colouring of the edges of Kn with colours
from [r], there is some index i for which there is a monochromatic Kti of colour i.

Formally, by an r-coloring of the edges we mean a function c : E(Kn) → [r]. Note that we had
to forget our nice habit of using actual colors in our coloring and retreat to the (probably more
boring and definitely less colorful) realm of naming our colors by integers. This is purely for
practical purposes, as statements about more than two colors become quite cumbersome to write
down when using not only red and blue, but also yellow, green, orange, purple, etc ... You get
the picture(!)

Theorem 2.8. For any r ≥ 2 and t1, t2, . . . , tr ∈ N, Rr(t1, t2, . . . , tr) is finite.

Proof. Proof by induction on r, the number of colours. Base case, r = 2, is Theorem 2.2.
For the induction step, suppose r ≥ 3, and we have numbers t1, t2, . . . , tr. We will take a large
enough n, the formula given later in the proof, and fix an arbitrary r-colouring c of the edges of
Kn.
The idea is to go “colorblind”, combine the last two colors together and use the finiteness of the
Ramsey numbers for r−1 colors. Of course this will guarantee what we want only in the first r−2
colours. In order to have what we want in the last two colors as well, we will ask our (r− 1)-color
Ramsey number to deliver a large enough clique in the last colour, so we can use that to take both
of the colorblinded orginal colors.
Let us now formalize this idea. We define coloring c∗ : E(Kn)→ [r−1] from c. Let c∗(xy) = r−1 if
c(xy) = r and c∗(xy) = c(xy) otherwise. By the induction hypothesis, Rr−1(t1, t2, . . . , tr−2, R(tr−1, tr))
is finite, and we choose n = Rr−1(t1, t2, . . . , tr−2, R(tr−1, tr)). Note that here we use that we use
that we already can assume the finiteness of the Ramsey number for any large value of clique
orders if the number of colors is only r− 1. Now the definition of the Ramsey number provides us
an appropriate monochromatic clique in one of the r− 1 colors. If this monochromatic clique is in
one of the first r− 2 colours, then we are done, as we then have a monochromatic clique of size ti
in colour i, 1 ≤ i ≤ r − 2. Otherwise we have a clique of size R(tr−1, tr) that uses the combined
colour. We now restore the original colouring, so that all of these edges are coloured either r − 1
or r. By definition of R(tr−1, tr), we also find the desired monochromatic clique in this case.

Remarks.

• What kind of upper bound does this give?

– Following the argument in the proof, we get

Rr(t1, t2, . . . , tr) ≤ R(t1, R(t2, R(t3, . . . R(tr−1, tr) . . .))),

– Applying Theorem 2.5 and the simplification that
(
s+t−2
s−1

)
< 2s+t, this shows that we

have

Rr(t1, t2, . . . , tr) ≤ 2t1+2t2+2
. .

.
2
tr−1+tr

– In particular, Rr(t, t, . . . , t) ≤ 22
. .

.
22t+1

(tower of height r)

• Can we do better?
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– By splitting colours evenly and merging them simultaneously in the above argument,
one can reduce the upper bound to a tower of height log r.

– In the homework you are asked to give an upper bound of the form r
∑

i ti (which is
much better!).

3 Lower bounds for Ramsey’s theorem
Recall that to lower bound R(s, t) one needs to provide a colouring of a large complete
graph without a red monochromatic Ks and a blue monochromatic Kt.
For example for R(3, 3) we were “lucky” to have the C5-construction that complements our upper
bound of 6 perfectly and hence proves that R(3, 3) = 6. The value of R(4, 4) is known (it is 18)
mainly because we are again lucky enough to have an incredibly nice coloring on 17 vertices which
does the deed. Starting from s ≥ 5 however, it is unclear how to generalize this construction the
“right way”. Or rather, the obvious generalization does not anymore match the upper bounds we
have available from our various PP-based arguments. For R(5, 5) all what is known is that

43 ≤ R(5, 5) ≤ 48.

The upper bound was improved from 49 to 48 just recently (last Spring), with heavy use of
computer checking. It is worthwhile to think over what such a proof must deal with. There
are 2(48

2 ) > 10338 red/blue-colourings of the complete graph on 48 vertices. The program must
consider all of them and verify that they all contain a monochromatic K5. Now, there are about
1080 particles in the (observable) universe and the age of the universe is thought of being about
1026 nanoseconds. So every single particle in the universe has to check at least 10232 of these
cases in every single nanosecond of its existence and then they have a chance to be finished by
now ... This indicates the enormous numbers involved in this simple combinatorial problem and
maybe explains our futility in solving it. And it also indicates that the recent verification must do
something clever besides pure brute-force checking.

3.1 A first idea: Dense Ks-free graphs
The first idea one might have for a construction is to be greedy. This sometimes works, greedy
algorithms are often effective in computer science. Here one could argue with the following heuris-
tic.
Heuristic. We need two Ks-free graphs complementing each other, that is together they should
occupy all the

(
n
2

)
edges of Kn. Let us first focus on the red graph and make sure that it uses up

as many of these edges as possible, and deal with the blue graph later.
This approach leads us to a natural extremal graph theory problem, asking for the maximum
number of edges a Ks-free graph on n vertices can have. Let us see first what happens when
s = 3, that is, in the case of triangle-free graphs. After some trial and error with examples of
triangle-free graphs on a small number of vertices, one convinces oneself that the complete bipartite
graph Kdn

2 e,bn
2 c seems to be a triangle-free graph with many edges. The result that indeed one

cannot do better, i.e. that every graph with

e
(
Kdn

2 e,bn
2 c
)

+ 1 =
⌈n

2

⌉
·
⌊n

2

⌋
+ 1

edges does have a triangle, is one of the first theorems of Extremal Graph Theory.

Theorem 3.1 (Mantel, 1907). If G is K3-free then e(G) ≤ e
(
Kdn

2 e,bn
2 c
)
.

Proof. Consider a vertex w of maximum degree in a triangle-free graph G, i.e. let d(w) = ∆(G) =:
∆. Recall that N(w) is the neighborhood of w, and let us denote by R(w) = V (G) \ N(w) the
rest. We bound from above the number of edges of G by adding up all the degrees of vertices in
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R(w). Indeed, by adding up the degrees of vertices in R(w) we account for each edge of G at least
once, since G is triangle-free, hence N(w) contains no edge. Consequently,

e(G) ≤
∑

v∈R(w)

d(v) ≤
∑

v∈R(w)

∆ = |R(w)| ·∆ = (n−∆)∆ ≤
(
n−

⌊n
2

⌋)
·
⌊n

2

⌋
= e

(
Kdn

2 e,bn
2 c
)
,

as required. Here we used that |R(w)| = n− |N(w)| = n−∆, and then maximized the quadratic
function x 7→ (n− x)x over the integers.

Remark. When adding up the degrees in R(w) we accounted for each edge between R(w) and
N(w) exactly once, and for each inside R(w) exactly twice. The reason we did not worry so much
because of this overcount is our firm belief in our construction being optimal. In the complete
bipartite graph there are no edges inside R(w), so if it is indeed optimal we do not lose anything
by this estimation.

The construction of complete bipartite graphs easily generalizes when instead of K3 we want to
forbid Ks+1. Then we can take a graph with a vertex set partitioned into s parts inlcude all edges
between parts and no edges inside the parts. These graphs are called complete s-partite graphs
and can be parametrized by the sizes of its parts t1, . . . , ts. Complete s-partite graphs do not
contain Ks+1, since two of the s + 1 vertices of any copy of a Ks+1 would have to be in the same
part (by the PP), but vertices in the same part are not adjacent, contradiction. Among complete
s-partite graphs the most edges are contained in the one where the parts are as equal as possible,
so any two parts have sizes differing by at most one. Indeed, otherwise we can move a vertex from
a bigger part to smaller part and increase the number of edges. This complete s-partite graph
on n vertices, where the difference between the size of any two parts is at most 1, is called the
Turán-graph and is denoted by Tn,s.
Turán has shown in 1941 (and we will shown in a couple of weeks) that the Turán graph Tn,s is
indeed the Ks+1-free graph with the most number of edges on n vertices.

Let us now return to our original problem of constructing an appropriate 2-coloring. As the red
graph, we decided to take the Ks-free Turán graph Tn,s−1 which uses up the most edges from Kn.
What is then the blue graph? It is the disjoint union of s − 1 cliques of order roughly n

s−1 . In
order to ensure that the blue graph also has no Ks, we better make sure that n

s−1 < s, that is
n ≤ (s − 1)2. In other words, with this method we can constructed Ramsey graphs on (s − 1)2

vertices, but no more. Hence

R(s, s) ≥ (s− 1)2 + 1,

pretty pathetic when compared to the best known upper bound, which stands close to 4s.

3.2 The right idea: random construction
The coloring of the previous subsection is pretty simple, yet it is surprisingly hard to improve.
For a short period of time Turán himself believed his construction to be optimal. Erdős massively
destroyed this belief in 1947 via an equally simple, but fundamentally different idea.
Heuristic. We want the same from the red and the blue graph (they should be Ks-free). Their
roles are symmetric. Each edge has as much reason to be red than to be blue. Let us choose the
color of each edge uniformly at random, independently from each other.

Theorem 3.2 (Erdős, 1947). R(t, t) ≥ (1− o(1)) t
e
√
2
2

t
2 .

Proof. The idea of this proof is to prove the existence of a large Ramsey colouring without actually
presenting it. Colour each edge of Kn by red or blue with probability 1/2, such that these random
choices are mutually independent of each other. In other words, our probability space consists of
the set of all red/blue-colourings of E(Kn) with all colorings being equally likely.
We want to avoid a monochromatic Kt. So for each R ∈

(
[n]
t

)
, i.e. each set R of t vertices, we

define ER be the event that the induced subgraph of Kn on R is monochromatic. The probability
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that ER happens is: P(ER) = 2( 1
2 )(

t
2) and we have

(
n
t

)
such events. The probability that there

exists a monochromatic Kt can then be estimated by the union bound

P

 ⋃
R∈([n]

t )
Kt

 ≤ ∑
R∈([n]

t )
P (RK) =

(
n
t

)
· 2 ·

(
1
2

)(t
2) ≤ 2

(
en
t

)t ( 1
2

)(t
2) .

If this expression is less than 1, then there exists a red/blue-coloring of E(Kn) without a
monochromatic Kt. Taking the t-th root and rearranging we obtain that if n < t

2
1
t ·
√
2e

2
t
2 , then P(

there is a m.c. Kt) < 1. Therefore, there exists a red/blue-colouring without a monochromatic
Kt on

n =

⌊
t

2
1
t ·
√

2e
2

t
2

⌋
vertices. It exists not with positive probability, or 99% probability, but with absolute, 100%
certainty, SURELY THERE IS ONE. And hence, R(t, t) ≥ (1− o(1)) t

e·
√
2
2

t
2 , as claimed.

Let us remark that this proof in fact shows that almost every colouring of a Kn on two less vertices
is a good colouring. However, we cannot explicitly find one. (See the Constructive Combinatorics
course next semester.)
Recall where we stand:

2
t
2 ≤ R(t, t) ≤ 4t.

So both bounds are exponential now, but they are still very far apart. A relatively recent improve-
ment (about a decade old) by a factor (which is superpolynomial, if ever so slightly) is considered
a great breakthrough and appeared in the Annals of Mathematics. But there are no improvements
to the bases. In particular, it would be a fantastic advance to prove that R(t, t) < 3.9999t holds.

In the above proof the use of probability is not essential, one could simply count bad colorings
among all colorings and conclude that there must be a good one left even after taking out all
the bad ones. Ultimately this is true about every statement in discrete probability. However, the
idea of introducing randomness is a major paradigm shift. It directs our attention to the various
tools of probability theory, some of which would really be problematic to say, not to mention find,
through just counting. The improvement of the next section is a initial step in this direction.

3.3 A twist on the method: improving the constant factor
It is worthwhile to note that one can prove2 that with probability tending to 1, the random coloring
will contain monochromatic cliques of order k−2, so in a way the crude analysis through the union
bound is essentially best possible.
Using some alterations to the random construction however, we can improve the Erdős lower
bound by a constant factor of

√
2. By the above, in this regime it is simply not anymore true that

the random coloring is a good one, still there is a good one.

Theorem 3.3. R(t, t) = (1− o(1)) t
e2

t
2 .

Proof. Like in the previous theorem, let us colour the edges of Kn uniformly at random by either
red or blue with probability 1

2 . As we mentioned before this proof, if we raise n above what we
have worked with in Theorem 3.2, it is inevitable that with overwhelming probability there will be
(many) monochromatic Kt. Our plan is to destroy each of these by deleting a vertex from them
and hope that the remaining two-colored clique, now without any monochromatic Kt, has retained
most of the original vertices. In other words, we need to show that the number of monochromatic
Kt is of smaller order than the number of vertices.
To this end, let X be the random variable that equals the number of monochromatic Kt’s in this
two-colouring. To have an idea about this seemingly complicated random variable, we express

2We do not do it here. One must use the second moment method
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it as the sum of many simple ones and apply a simple yet surpringly powerful general property
of expectation of variables: its linearity. For each t-element set K, let XK denote the indicator
random variable of the event that K induces a monochromatic Kt. Then X =

∑
K∈([n]

t )
XK and by

the linearity of expectation

E[X] =
∑

K∈([n]
t )

E[Xk] =
∑

K∈([n]
t )

P(XK) =
(
n
t

)
· 2 ·

(
1
2

)(t
2).

Therefore, there exists a colouring c such that the number of monochromatic Kt’s is at most(
n
t

)
· 2 ·

(
1
2

)(t
2). Fix such a colouring and delete one vertex from each monochromatic Kt. This

gives us a red/blue-coloring on at least n −
(
n
t

)
· 2 ·

(
1
2

)(t
2) vertices without any monochromatic

Kt. Hence

R(k, k) > n−
(
n

t

)
· 2 ·

(
1

2

)(t
2)
≥ n−

(ne
t
· 2−

t−1
2 + 1

t

)t
(1)

where we estimated
(
n
t

)
≤
(
ne
t

)t. Substituting n =
√

2
t · te , we obtain a red/blue-coloring on

√
2
t
· t
e
−
(

2
1
2+

1
t

)t
=
√

2
t
· t
e

(1− o(1))

vertices.3 This shows the promised lower bound on R(t, t).
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