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1 A motivation: the Happy Ending Problem
Our present problem has been suggested by Miss Esther Klein in connection with

the following proposition.
From 5 points of the plane of which no three lie on the same straight line it is

always possible to select 4 points determining a convex quadrilateral.
We present E. Klein’s proof here because later on we are going to make use of it.

If the least convex polygon which encloses the points is a quadrilateral or a pentagon
the theorem is trivial. Let therefore the enclosing polygon be a triangle ABC. Then
the two remaining points D and E are inside ABC. Two of the given points (say A
and C) must lie on the same side of the connecting straight line DE. Then it is clear
that AEDC is a convex quadrilateral.

Miss Klein suggested the following more general problem. Can we find for a given
n a number N such that from any set containing at least N points it is possible to
select n points forming a convex polygon?

There are two particular questions: (1) does the number N corresponding to n
exist? (2) If so, how is the least N(n) detremined as a function of n?

The text above is from the introduction of a paper of Paul Erdős and George Szekeres from 1935.
We put it here in original quote, because in retrospect this paper turned out be pioneering in two
different, and at the time completely new fields: combinatorial geometry and Ramsey theory.
Two years before, in 1933, the three main protagonists, along with a group of other young math-
ematically inclined, like Turán (whose name we will also hear a lot this semester), were meeting
regularly after university in the main park of Budapest and taking long walks in the wood to
discuss, what else, mathematics. Apparently, already then, this is what the cool kids were doing
in their free time.
It was at one of these meetings when Esther confronted the boys with her proof for a convex
quadrangle and the general question. Paul and George immediately jumped on the topic with
great enthusiasm, they got really excited by what they felt was a completely new type of geometric
problem. They gave constructions of point sets of size 2t−2 in general position, without containing
a convex t-gon. They also answered (1) in two different ways and in the process they rediscovered
Ramsey’s Theorem independently.
To motivate how the connection might have come about let us first make a few things precise from
the introduction. First of all we will be dealing with point sets P that are in general position, i.e.,
no three points of P are on the same line. With forsight we will denote by HE(t) (and not N(t))
the minimum integer n such that any n points in the plane in general position contain t points
spanning a convex t-gon.
All four-element point sets in general position in the plane are exactly one of two kinds: either
they form a convex 4-gon or not, depending on whether their convex hull is a quadrilateral or
a triangle. The first easy, but important, observation is that the convexity of a t-element set in
general position could be characterized through the convexity of its four-element subsets.

Proposition 1.1. A t-element subset in general position forms a convex t-gon if and only if all(
t
4

)
of its four-subsets form a convex 4-gon.
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Proof. If P ⊆ R2 forms a convex t-gon, then no point is the convex combination of the other n−1.
In particular no point is the convex combination any other three points, so every four-subset is
convex.
In the other direction, suppose that every four-subset of P is a convex 4-gon. If a point p ∈ P
would be a convex combination of the others, then it is also a convex combination of just three of
them: the vertices of the triangle which contains it, from an arbitrary triangulation of the convex
hull of P . This provides non-convex four-subset of P , a contradiction.

The second important observation is the proposition of Klein, which says that it is impossible that
for some five-element set none of the

(
5
4

)
four-element subsets are convex.

Proposition 1.2. It cannot happen that for some 5-element point set in general position none of
the four-element subset forms a convex 4-gon.

The natural classification of four-element point sets and the relation of these classes to larger
point sets lead Erdős and Szekeres to the idea to color the four-element subsets of n points in
general position by red or blue given whether they are in convex position or not, respectively.
Then Proposition 1.1 translates to a t-element subset being in convex position if and only if all
its
(
t
4

)
four-element subset are red. Klein’s proposition on the other hand forbids the presence of

a five-element set with all its four-subsets being blue.
So, let’s do some wishful thinking. If we were to know that there exists an integer, however large,
but finite, denoted mysteriously by R(4)(t, 5), such that for any red/blue-coloring c :

(
[R]
4

)
→

{red, blue} of the 4-element subsets of the R(4)(t, 5) =: R-element set [R], there exists a t-element
subset T ⊆ [R] with all its 4-subsets red or a 5-element subset T ⊆ [R] with all its 4-subsets blue,
so if we know all this, then we would be done! Because then, we claim, HE(t) ≤ R(4)(t, 5), so
HE(t) was also finite. Indeed, should such miraculous R := R(4)(t, 5) existed for some t, then
taking an arbitrary set P ⊆ R2 of R points in general position and creating the coloring described
above, this coloring cannot contain a 5-subset with all its four-subsets having color blue! But
then, by the magic property of the number R, there must be a t-subset T ⊆ [R] for which every
4-subset is red. And that, via Proposition 1.1, implies that T is in convex position!
All we need is the existence of such a magic number R(4)(t, 5). This motivated Erdős and Szekeres,1
and motivates us as well, to introduce a Ramsey number for colorings, where instead of edges (i.e.
2-element subsets), we color k-element subsets.

2 The hypergraph Ramsey theorem
What is a hypergraph? It is a generalization of the concept of graphs, where instead of just
2-element vertex sets, as edges, we consider arbitrary subsets of a vertex set V . Formally, a
hypergraph is defined as a pair (V,F) of a vertex set V and edge set F , where F ⊆ 2V . Often, if it
is not ambiguous, we omit referring to the vertex set and identify the hypergraph with its edge set
F . A hypergraph is called k-uniform, for some positive integer k, if all its edges have size k, that
is if F ⊆

(
V
k

)
. A k-uniform hypergraph is sometimes called a k-graph. The edges of a hypergraph

are sometimes called hyperedges, and the edges of a k-graph are sometimes called k-edges.

Examples.

(1) For k = 2, we get back our good old graph concept: a 2-graph is just a graph.

(2) The analogue of complete graphs: the complete k-graph on t vertices contains all k-subsets of
the t-element vertex set [t] and is denoted by K(k)

t . In other words, K(k)
t =

(
[t],
(
[t]
k

))
.

1There might also have been other motivating factors ... But this is just speculation .... Anyway, Esther Klein
and George Szekeres were married a couple of years after the initiation of the problem by the former and its
extension (together with Erdős) by the later. This prompted Paul Erdős to coin the term Happy End Problem.
Klein and Szekeres escaped persecution of Jews in Hungary before the second world war and settled in Australia
afterwards. They died within an hour of each other at the age of 95 and 94, respectively. A good example of how
far an innocent-looking math problem might lead you ...
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(3) There are various analogues of many graph theoretic concepts, like path and cycles: tight
paths/cycles, loose paths/cycles, `-tight paths/cycles, Berge-cycles, etc ...

(4) Projective planes: V = points := 1-dimensional subspaces of K3, F = lines := 2-dimensional
subspace of K3, where K is an arbitrary field. When K is the finite field Fq, we get a (q+1)-
uniform hypergraph with q2 + q + 1 vertices and equally many hyperedges. E.g. the Fano
plane is the 3-uniform hypergraph on 7 vertices with 7 edges corresponding to the projective
plane over F2.

Figure 1: The Fano plane

For the rest of this section we will only be concerned with the complete k-uniform hypergraph.
We will define hypergraph Ramsey number as the straightforward generalization of graph Ramsey
numbers.

Definition 2.1 (Hypergraph Ramsey Number). Given k ∈ N, and s, t ≥ k, R(k)(s, t) is the
minimum n ∈ N such that for every coloring c :

(
[n]
k

)
→ red/blue there exists a set T ∈

(
[n]
t

)
such

that c(S) = red for every S ∈
(
T
k

)
or there exists a set T ∈

(
[n]
s

)
such that c(S) = blue for every

S ∈
(
T
k

)
.

Sometimes we refer to the property of the subset T in the definition that T hosts a red K(k)
s or

that it hosts a blue K(k)
t . We call a hypergraph with all its edges colored with the same color

monochromatic.
Before going on on, let us make some simple observations:

(1) R(2)(s, t) = R(s, t).

(2) R(1)(s, t) = s+ t− 1 (think over the detailed proof!)

(3) R(k)(s, t) = R(k)(t, s).

(4) R(k)(k, t) = t.

Analogous to the graph case, the first question we should ask ourselves is whether R(k)(s, t) is
finite.

Theorem 2.2. For arbitrary positive integers k, and t, s ≥ k, the value R(k)(s, t) is finite.

Remark. In the homework exercise you will be asked to define hypergraph Ramsey numbers for
more than two colors and prove their finiteness. Moreover, the theorem also extends to the infinite
setting analogously to the infinite Ramsey theorem for graphs.

First proof. We will follow the idea of the proof of Theorem 2.2 from week 1. and build a sequence
where the color of every edge depends only on its smallest vertex in the sequence, and this way
one can naturally identify a color with each vertex of the sequence. Then the 1-uniform Ramsey
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theorem will be used to select a subsequence where all these colors are the same, hence providing
us with the monochromatic clique we want.
A sequence v1, . . . , v` ∈ U of vertices will be called right-neighborhood-monochromatic in the set
U , if the color of a k-set contained in U depends only on its element from the sequence with the
smallest index (provided such an element exists). Formally, a sequence v1, . . . , v` ∈ U is called
right-neighborhood-monochromatic in U if there exists a coloring c∗ : [`]→ {red, blue} such that
for every k-set T ∈

(
U
k

)
with T ∩ {v1, . . . , v`} 6= ∅, we have c(T ) = c∗(vminT ), where we adopted

the notation minT = min{j : vj ∈ T}.
Similarly to Theorem 2.2 from week 1, our goal is to build a long enough right-neighborhood-
monochromatic sequence v1, . . . , v` in some set V` of large enough size. For us the length ` =
t + s − 2k + 1 will suffice with |Vt+s−2k+1| = t + s − k. Indeed, if we succeed to build such a
sequence, then the 1-uniform Ramsey theorem will provide us with a subsequence of length t−k+1
which is c∗-monochromatic in red or a subsequence of length s−k+1 which is c∗-monochromatic in
blue. Such a sequence unioned with the remaining k−1 vertices in Vt+s−2k+1\{v1, . . . , vt+s−2k+1}
forms a c-monochromatic subset T of the size required for its color. It is easy to check that a
set T obtained this way is always monochromatic. For this just note that every k-subset S ⊆ T
does contain at least one element of the sequence (since the rest has only k − 1 elements). Then
the c-color of this S is the c∗-value of the minimum sequence-index appearing in S. But all these
colors are the same by the way we selcted the elements of T from the sequence.
Let us see now how can we build recursively a right-neighborhood sequence v1, . . . , vi in some set
Vi and the appropriate coloring c∗ : [i]→ {red, blue}.
For v1 we choose an arbitrary vertex in V0 := [n]. To find V1, we consider the coloring of the
complete (k− 1)-uniform hypergraph on V0 \ {v1} induced by the c-colors of the k-sets containing
v. Formally, let c̃(Q) := c(Q∪{v1}) for every Q ∈

(
V0\{v1}

k−1
)
. The (k−1)-uniform Ramsey theorem

(true by induction) will provide us with a (large) c̃-monochromatic subset N1 of size n1 and we
put V1 = N1 ∪ {v1}. Then v1 is right-neighborhood-monochromatic in V1 by the definition of N1,
because we can simply define c∗(1) to be the c̃-color of the (k − 1)-subsets of N1.
Given a sequence v1, . . . , vi that is right-neighborhood-monochromatic in some Vi with an appropri-
ate function c∗ : [i]→ {red, blue} we choose vi+1 arbitrarily from Ni := Vi \ {v1, . . . , vi}. We find
Vi+1 by considering the coloring c̃, defined by c̃(Q) := c(Q∪{vi+1}) for every Q ∈

(
Ni\{vi+1}

k−1
)
, and

(hoping to) use the (k−1)-uniform Ramsey theorem to provide us with a (large) c̃-monochromatic
subset Ni+1 of size ni+1. Then we put Vi+1 = Ni+1 ∪ {v1, . . . , vi+1}. The vertex vi+1 is right-
neighborhood-monochromatic in Ni+1∪{vi+1} because Ni+1 is c̃-monochromatic and consequently
the whole sequence v1, . . . vi+1 is right-neighborhood-monochromatic in Vi+1. Indeed, we can sim-
ply extend the already existing c∗ : [i]→ {red, blue} to i+1 by defining c∗(i+1) to be the c̃-color
of the (k − 1)-subsets of Ni+1.
Now the only thing left to do is to make sure that we are able to build a long enough sequence and
have the last set Vt+s−2k+1 of size at least k−1. We secure this by choosing the sizes ni large enough
with respect to ni+1. We set nt+s−2k+1 = k− 1. To make sure that there is a monochromatic set
Ni+1 of size ni+1 in an arbitrary red/blue-coloring of the (k − 1)-subsets of a set of size ni we
recursively choose ni = 1+R(k−1)(ni+1, ni+1) for every i = s+ t− 2k, . . . , 2, 1, 0. We can do this
because by induction all these (k−1)-uniform Ramsey numbers are finite. Consequently we succed
in creating the appropriate right-neighborhood-monochromatic sequence, provided n ≥ n0+1.

Homework. Prove the recursion R(k)(t, s) ≤ R(k−1)(R(k)(t − 1, s), R(k)(t, s − 1)) and conclude
Theorem 2.2.

An immediate question after verifying any kind of finiteness should be “How large is finite?” Let
us see. Using the recursion ni = R(k−1)(ni+1, ni+1) + 1 =: R(k−1)(ni+1) + 1 and the final value
ns+t−2k+1 = k − 1, we obtain

n0 = R(k−1)(R(k−1)(...(R(k−1)(k − 1) + 1)...) + 1) + 1,

where the function R(k−1) appears s+ t− 2k + 1 times.
For k = 2 this resolves to R(2)(s, t) ≤ R(1)(R(1)(...(R(1)(1) + 1)...) + 1) + 1 = 2s+t−3, indicating
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that the above proof is indeed the generalization of the argument in the proof of Theorem 2.2
from Week 1.
For k = 3 we obtain

R(3)(s, t) ≤ R(2)(R(2)(...(R(2)(2) + 1)...) + 1) + 1 ≤ 22·R
(2)(...(R(2)(2)+1)...)+1)−1

≤ 22
2·R(2)(...(R(2)(2)+1)...))−1 ≤ · · · ≤ 22

2.
..
2

,

a tower of height t+ s− 3.
For uniformity k = 4 things get completely out of hand: we have t + s − 3 3-uniform Ramsey
functions, each being a tower function, embedded inside one another ... To see a concrete example,
let us note that the bound we get for R(4)(5, 5), which is our upper bound on the Happy-Ending
number HE(5) = 9, is a tower of 29 twos. For an upper bound on 17 = HE(6) ≤ R(4)(6, 5) we
have to take a tower of 2s of the height, which is a tower of 2s of height 29. This might question
your intuitive understanding of the word finite...

Before proving the theorem again, let us analyse the proof given above and try to see why the bound
became so incredibly large. We built our “right-monochromatic” sequence v1, v2, ..., vs+t−2k+1 to
this particular length so at the end we could use the 1-uniform Ramsey numbers for the sequence.
For each new element of the sequence we had to apply the (k− 1)-uniform Ramsey numbers. Our
upper bound on the (k − 1)-uniform Ramsey numbers are very large, their repeated application
forces them to be embedded inside the arguments of the previous one and this causes the bound
to become very-very-very-· · · -very large.
In contrast to this, the 1-uniform Ramsey bound, which we used only once at the end is rather
small: only the sum of the two arguments (minus one. In fact this is not only a bound, but the
exact value.) Erdős and Rado turned the proof idea on its head and tried to use the 1-uniform
Ramsey numbers many times, but in exchange reduce the use of (k − 1)-Ramsey numbers. They
decided to build a much longer sequence by using the 1-dimensional Ramsey numbers in each
round, so they have to use the (k − 1)-uniform Ramsey numbers only once, at the end, for the
sequence. This reduces the bound to a function we can actually write down. This function will
still be large, but is relatively “close” to the truth.

Second proof of Theorem 2.2. Again we will apply induction on the uniformity k. The base case
k = 1 was proved already.
Let n ∈ N be chosen large enough with respect to k, t, and s and let us be given an arbitrary two-
coloring c :

(
[n]
k

)
→ {red, blue} of the k-subsets of [n]. Our goal is to find either a monochromatic

t-element subset T ⊆ [n] in red (i.e. c(Q) = red for every Q ∈
(
T
k

)
) or a monochromatic s-element

subset T ⊆ [n] in blue (i.e. c(Q) = blue for every Q ∈
(
T
k

)
).

Our goal is to build a sequence v1, . . . , v` of vertices that is right-(k−1)-neighborhood-monochromatic.
By this we mean that the color of a k-set contained in {v1, . . . , v`} should only depend on its k−1

smallest indices. Formally, by this we mean that there exists a coloring c∗ :
(
[`−1]
k−1

)
→ {red, blue}

such that for every k-subset T ⊆ {v1, . . . , v`}, we have c(T ) = c∗(Tmin(k − 1)), where we adopted
the notation Tmin(k − 1) ∈

(
[`−1]
k−1

)
for the set of the k − 1 smallest indices j of vertices vj ∈ T .

How long a sequence should we build? We observe that if we manage to build a right-(k − 1)-
neighborhood monochromatic sequence of length ` = R(k−1)(t − 1, s − 1) + 1, then we are done.
The (k− 1)-subsets of [`− 1] are colored according to c∗. By the property of the Ramsey number
R(k−1)(t − 1, s − 1), we find an index subset I ⊆ [` − 1] of size t − 1 which is monochromatic
red under c∗ or an index subset I ⊆ [` − 1] of size s − 1 which is monochromatic blue under
c∗. Then we claim that the subset T := {vi : i ∈ I} ∪ {v`} is c-monochromatic in the same
color as I is c∗-monochromatic in. And then of course it also has the required size (t in case
of color red and s in case of color blue). To see this, let us take an arbitrary k-element subset
Q ⊆ T . By the right-(k−1)-neighborhood monochromatic property of the coloring c∗ we have that
c(Q) = c∗(Qmin(k−1)), where Qmin(k−1) ⊆ I is a (k−1)-element subset of the c∗-monochromatic
index subset I.
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So to complete the proof of our theorem we need to construct the right-(k − 1)-neighborhood
monochromatic sequence of the required length. Our plan is to construct a sequence v1, . . . vi
recursively. We will maintain a set Ni of vertices that are still “eligible” to be added to the
sequence, that is, the c-color of any k-subset of vertices of Vi := {v1, . . . vi} ∪ Ni with at least
k − 1 vertices among v1, . . . , vi indeed only depends on the k − 1 smallest indices. We will pick
the next vertex vi+1 arbitrarily from Ni and then reduce Ni to create Ni+1 in order for the right-
(k− 1)-neighborhood monochromatic property also to hold for k-subsets involving the new vertex
vi+1.
To start let us select arbitrary vertices v1, . . . vk−2 ∈ [n] and set Nk−2 = [n] \ {v1, . . . , vk−2}.
Suppose that i ≥ k − 2 and we are given a sequence v1, . . . , vi and a set Ni disjoint from it, such
that there exists a coloring c∗ :

(
[i]

k−1
)
→ {red, blue} with the property that for every k-subset

T ⊆ {v1, . . . , vi} ∪Ni with |T ∩ {v1, . . . , vi}| ≥ k − 1, we have c(T ) = c∗(Tmin(k − 1)). Note that
such a sequence v1, . . . , vi is always right-(k−1)-neighborhood monochromatic and that our initial
choices vacuously satisfy the condition.
We choose the next vertex vi+1 ∈ Ni arbitrarily. In order to designate Ni+1 ⊆ Ni \ {vi+1}, we
define a function c̃ : Ni \{vi+1} → {red, blue}(

i
k−2), such that the components of c̃(w) for a vertex

w ∈ Ni \ {vi+1} correspond to the (k − 2)-subsets of [i], and for the component corresponding to
a subset L ∈

(
[i]

k−2
)
we have

c̃(w)L := c(L ∪ {vi+1, w}).
This function is so defined that if we chose Ni+1 to be the c̃-inverse image of any red/blue-vector,
then we ensure that the desired property of the sequence v1, . . . , vi and the function c∗ extends
to the (k − 1)-element index subsets containing i + 1. Indeed, choosing Ni+1 to be the inverse
image of the fixed red/blue-vector α ∈ {red, blue}(

i
k−2), we can extend c∗ to

(
[i+1]
k−1

)
as follows.

The function c∗ is already defined for sets in
(

[i]
k−2
)
, now choose an index set I ∈

(
[i+1]
k−2

)
that

contains i + 1 and define c∗(I) := αI\{i+1}. To check that this definition is in line with what is
desired from c∗, let us take any k-subset Q ⊆ {v1, . . . , vi+1} ∪ Ni+1, with vi+1 ∈ Q and having
|Q ∩ {v1, . . . vi+1}| = k − 1. Then Q is of the form Q = {vj : j ∈ J} ∪ {vi+1, w}, where J ⊆

(
[i]

k−2
)

and w ∈ Ni+1. In particular we have Qmin(k − 1) = J ∪ {i + 1}. By definition of c̃, and c∗, and
since w ∈ c̃−1(α), we obtain

c(Q) = c̃(w)J = αJ = c∗(J ∪ {i+ 1}) = c∗(Qmin(k − 1)),

verifying the desired property of c∗.
To make Ni+1 large we choose the largest possible c̃-inverse image. Hence Ni+1 can be chosen so
its size is at least the average size of an inverse image, that is

|Ni+1| ≥
⌈
|Ni| − 1

2(
i

k−2)

⌉
, (1)

for every i ≥ k − 2.
Now let us estimate the size of n required in this proof. To make the sequence long enough, that
is, to be able to choose the `th element of the sequence, we need that the set N`−1 has at least
one element. To ensure that |N`−1| ≥ 1 we use (1) repeatedly and choose n = |Nk−2|+k− 2 large
enough. Namely, if |Nk−2| ≥ 2(

`
k−2) then we can choose the subsets Nk−2 ⊇ Nk−1 ⊇ · · · ⊇ N`−1,

such that

2(
`−1
k−2) ≤ |Nk−2| ≤ 2(

k−2
k−2)|Nk−1| ≤ 2(

k−2
k−2) · 2(

k−1
k−2)|Nk| ≤ · · · ≤

`−2∏
j=k−2

2(
j

k−2)|N`−1| =

= 2
∑`−2

j=k−2 2(
j

k−2) · |N`−1| = 2(
`−1
k−2) · |N`−1|,

implying that N`−1 is not empty and v` can be chosen.
In conclusion, the choice

n = 2(
`−1
k−1) + k − 2 = O

(
2`

k−1
)
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with
` = R(k−1)(t, s)

is sufficiently large for our selection process to go through and thus provides an upper bound on
the Ramsey number R(k)(t, s).

By repeated application of this theorem we obtain a greatly improved upper bound compared to
the first proof. We highlight this here by explicitely writing out the bound for the symmetric case
t = s.

Corollary 2.3. R(k)(t, t) is upper bounded by a tower function of t of height k.

This upper bound is actually not that far from the truth. There is a construction of a red/blue-
coloring of the k-sets without a monochromatic t-clique on a vertex set of size that is a tower
function of t of height k − 1. To decide which height is the truth, even just for the 3-uniform
Ramsey function, is worth a $500 reward (by Erdős).

7


	A motivation: the Happy Ending Problem
	The hypergraph Ramsey theorem

