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1 The hypergraph Ramsey theorem

1.1 The Canonical Ramsey Theorem
In this section, we temporarily abandon our pursuit of the various bounds in “quantitative” Ramsey
theory and return to the “qualitative” philosophical orgins of “complete disorder is impossible”.
The fundamental question of Ramsey theory is: given a classification (i.e., a coloring) of the
elements of some structure, what sort of “order” can one necessarily find in it? We have seen many
examples where a structure is colored with an arbitrary finite number of colors and we concluded
the existence of a large “orderly” substructure (where by “orderly” we meant a substructure that
is monochromatic).
An instance of this was the infinite Ramsey theorem. This can be generalized for hypergraphs
and arbitrary finite number of colors.

Theorem 1.1 (HW). For any positive integer r and any r-colouring of
(N
k

)
, there exists an

infinite set S ⊆ N for which
(
S
k

)
is monochromatic.

In this subsection we will ask ourselves whether complete disorder would still be impossible if we
colored our structire by infinitely many colors. We immediately realize that we must revise our
notion of “orderly” substruture, as coloring each pair in

(N
2

)
by a different color will not even leave

us a monochromatic subset of size three!1
In light of this example it seems necessary to include the situation when all pairs of elements of a
set have distinct colors among orderly structures. This motivates the following definition.

Definition 1.2. Given a colouring c :
(N
2

)
→ C, a set S ⊆ N is called c-rainbow if no two pairs

of S have the same color.

In the above coloring example the whole N is a rainbow set. Is this enough for the concept of
“orderly”? Are we always guaranteed to find either an infinite monochromatic set or an infinite
rainbow set? The answer is still no. To see this, simply colour each pair {i, j} with its minimal
element min{i, j}. In this coloring we still do not find a monochromatic set of size three, but
neither find a rainbow set of size three. This example motivates the following definition.

Definition 1.3. Given a colouring c :
(N
2

)
→ C, a set S ⊆ N is called c-left-injective if there is

an injective map c∗ : N→ C, such that c(ij) = c∗(min{i, j}).

The name left-injective subset originates in its property that the colour of an edge is uniquely
determined by its left endpoint. Note that the a left-injective subset forms a right-monochromatic
sequence (from the last subsections).
Of course there is nothing special about the minimum, we could also define a coloring of

(N
2

)
by

setting the color of every edge to be the maximum of its endpoints. Then there is no monochro-
matic, no rainbox, and no right-injective set of size three. Hence analogously we define the notion
of right-injective colouring.

1 For notational simplicity we restrict ourselves further to the 2-uniform case; analogous results hold for arbitrary
uniformity k.
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Definition 1.4. Given a colouring c :
(N
2

)
→ C, a set S ⊆ N is called c-right-injective if there is

an injective map c∗ : N→ C, such that c(ij) = c∗(max{i, j}).

Surprisingly, it is not only necessary but also sufficient that we extend our notion of “orderly”
subset to include these four cases: one of them will occur! This is stated in the next Canonical
Ramsey Theorem.

Theorem 1.5 (Erdős-Rado, 1950). Let c :
(N
2

)
→ C be a coloring. Then there is some infinite set

S ⊆ N such that either

i) S is c-monochromatic, or

ii) S is c-rainbow, or

iii) S is c-left-injective, or

iv) S is c-right-injective.

Remarks

• This is a strengthening of Ramsey’s Theorem for finitely many colors from the Homework.
Indeed, when the number of colors used is finite, then options (ii)-(iv) are impossible.)

• The colorings appearing on these four types of sets are called the canonical colorings. In
case (ii) the color of an edge is determined injectively by both enpoints, in case (iii) it is
determined by the left endpoint, in case (iv) it is determined by the right endpoint, and
in case (i) it is just determined (by no endpoint). The theorem states that every colouring
contains an infinite canonically coloured clique.

Proof. The idea of the proof, just like in the approach to the Happy-Ending Problem, is to try
to use local informations to deduce something for the global structure. Since we will need to
compare the colors on pairs of edges, we should be interested in the coloring of 4-element subsets.
One of the main questions is how to reduce the number of colors to finite, so that we are able
to use the 4-uniform Ramsey Theorem. To this we will colour the 4-subsets of N such that we
encode the information about the color pattern on the edges between these four integers. This
coloring will use only finitely many colors since we will only be interested in the colour pattern i.e.
keeping track of which edges have the same colour and which do not, but we will not care exactly
which particular colors we use to create this pattern. It might sound surprising at first that this
information, the color pattern on 4-element sets, is sufficient to deduce the existence of an infinite
set with a canonical coloring.
Formally, let us define a coloring ĉ :

(N
4

)
→ B

((
[4]
2

))
where B

((
[4]
2

))
is the set of all set partitions2

of the six-element set
(
[4]
2

)
. The value ĉ({i1, i2, i3, i4}) for some 4-subset {i1, i2, i3, i4} with i1 <

i2 < i3 < i4 is just the set partition that is induced by the inverse images of c on the set
({i1,i2,i3,i4}

2

)
and hence in turn on the set

(
[4]
2

)
.

For example, the value of ĉ,

• for a rainbow 4-set is {{12}, {13}, {14}, {23}, {24}, {34}},

• for a monochromatic 4-set is {{12, 13, 14, 23, 24, 34}},

• for a left-injective subset is {{12, 13, 14}, {23, 24}, {34}},

• for a right-injective subset is {{12}, {13, 23}, {14, 24, 34}}.

2The cardinality of B
(([4]

2

))
is the sixth Bell number B6 = 203, which is the sum of the Stirling numbers

S(6, k)of the second kind with the summation running till k = 6.
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We use the 4-uniform Ramsey Theorem for 203 colors and find an infinite ĉ-monochromatic subset
S = {s1 < s2 < · · · < si < · · · } ⊆ N. In other words there is a set partition p ∈ B

((
[4]
2

))
such that

for every 4-subset T = {i1 < i2 < i3 < i4} ⊆ S we have c(iuiv) = c(iwiz) for some uv,wz ∈
(
[4]
2

)
if and only if uv and wz are in the same class of the set partition p. Now we have a little case
distinction based on how p looks like.
Case 1. p = {{12}, {13}, {14}, {23}, {24}, {34}}. In this case the whole S is rainbow. Indeed, for
any two edges s1s2 and s3s4, there exists a 4-element subset T containing both of these edges.
Since ĉ(T ) = p, all edges, in particular also s1s2 and s3s4 have distinct c-colors.
Case 2. There is a partition class of p with at least two pairs.
We will show that c induces a canonical coloring on Seven = {s2i : i ∈ N}.
Case 2a. There are two pairs that are disjoint and are contained in the same partition class of p.
If 12 and 34 are in the same class then S is an infinite c-monochromatic subset, as the color of
any two edges sxsy and susv are equal since they are both equal to the color of the edge sasa+1,
say with a = max{x, y, u, v}+ 1.
If 14 and 23 are in the same class then S \ {s1} is an infinite c-monochromatic subset.
If 13 and 24 are in the same class, then Seven = {s2i : i ∈ N} is an infinite c-monochromatic subset.
Case 2b. Every two pairs that are disjoint are in different partition classes of p.
Consequently there must be two pairs xz and yz ∈

(
[4]
2

)
that are in the same partition class of p.

Without loss of generality x < y.
If x < z < y, then Seven is c-monochromatic.
If z < y < x, then Seven is c-left-injective.
If y < x < z, then Seven is c-right-injective.

Remark. The Canonical Ramsey Theorem extends to the k-uniform setting. There we will have
to admit 2k canonical colourings. (Homework)

2 Ramsey theory and the chromatic number of hypergraphs
The first superficial but usual line of confusion with the r-colorings of the edges of the complete
graph in graph Ramsey theory is that they have something to do with proper colorings or proper
edge colorings as one learns these useful concepts before. And they don’t. Now we describe a
point of view which shows how it is in fact closely related to proper coloring of hypergraphs.
In the definition of proper coloring of a graph we require that the colors of neighboring vertices are
different. This can be generalized in various ways to hypergraphs; the concept we will be dealing
with forbids hyperedges that are monochromatic.

Definition 2.1. Given a hypergraph H on vertex set V , a function c : V → [r] is called proper
r-coloring of H if every edge e ∈ H contains vertices with different colors. The chromatic number
χ(H) of the hypergraph is the smallest r for which there exists a proper r-coloring of H.

It turns out that all our symmetric Ramsey statements can be naturally formulated as statements
about the chromatic number of a special hypergraph. To this end let us define for positive integers
n ≥ t ≥ k the Ramsey hypergraph R(k)

n,t as the
(
t
k

)
-uniform hypergraph on the vertex set

(
[n]
k

)
where

R(k)
n,t =

{(
T

k

)
: T ⊆ [n], |T | = t

}
.

That is, for each vertex subset of size t we define a hyperedge in R(k)
n,t, containing all the k-subsets

of the clique induced by T . Hence the number of hyperedges of R(k)
n,t is

(
n
t

)
.

In Ramsey theory we were studying the chromatic number of the hypergraph R(k)
n,t for various

values of the parameters n, t, k. Indeed, in the most classical of all Ramsey problems, a coloring
of the edges of Kn does not contain a monochromatic Kk if and only if the corresponding vertex
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coloring of the hypergraph R(2)
n,t is proper. In other words R(t, t) ≤ n if and only if χ

(
R(2)

n,t

)
> 2,

that is we are looking for the smallest integer n when the hypergraph R(2)
n,t is not 2-colorable.

To formulate the infinite Ramsey theorem in terms of chromatic number, one can introduce for
any positive integers k the infinite Ramsey hypergraph R(k)

∞ on vertex set
(N
k

)
where

R(k)
∞ =

{(
T

k

)
: T ⊆ N, |T | =∞

}
.

The infinite Ramsey theorem then simply states that χ
(
R(k)
∞

)
= ∞ (since no r-colouring is

proper, for any positive integer r).

2.1 Property B
The above is just one motivation us to study 2-colorability of hypergraphs. The manifestation of
the concept for graphs is extremely useful: bipartite graphs are known to model many scenarios
and their theory is well-developed. They are easy to recognize. This is not the case for hyoergraphs:
deciding the 2-colorability of given hypergraph is an NP-hard problem, already for uniformity 3.
In case of an NP-hard decision problem one does what one can, find meaningful conditions guar-
anteeing that the property is satisfied. Next we will concern ourselves with finding sufficient
conditions for the 2-colorability of a hypergraph in terms of its number of edges. If a k-uniform
hypergraph, with k ≥ 2, has only one edge (or just a few edges) then it is for sure easily 2-
colorable. We will be after determining how few is this few as a function of the uniformity k of
the hypergraph.
To this end let us definemB(k) to be the smallest integerm such that there exists a non-2-colorable
k-graph with m edges. The letter B signals the traditional name for the 2-colorability property of
hypergraphs.3
To internalize this function, let us think over what follows and what does not follow from mB(k) =
m.

• ⇒ there is a k-graph with m edges that is not 2-colorable.

• ⇒ every k-graph with m− 1 edges is 2-colorable.

• 6⇒ every k-graph with m edges is not 2-colorable. (eg. disjoint union of arbitrarily many
k-edges is always 2-colorable)

Iterating the above theme let us spell out what needs to be done in order to prove bounds on
mB(k).

• To have m as an upper bound, we need to give a construction (or prove the existence) of
a k-graph with m edges, such that every 2-coloring of it contains a monochromatic edge.

• To have m as a lower bound, we need to properly 2-color every k-graph with m− 1 edges.

Let us practice with the case k = 2. What is mB(2)? For an upper bound we can give K3, which
is a non-2-colorable 2-graph with three edges. This shows that mB(2) ≤ 3. For a lower bound we
note that every graph with two edges is 2-colorable. So mB(2) = 3.
Let us generalize the above complete graph construction and give some upper bound for every k.
For what values of n will the complete k-graph K(k)

n =
(
[n]
k

)
be non-2-colorable? For n ≤ 2k− 2, it

is 2-colorable since one can color at most k − 1 vertices red and at most k − 1 vertices blue and
not have any monochromatic k-edge.
For n = 2k − 1 however, no matter how we color, by the PP one of the color classes will have
size at least

⌈
2k−1

2

⌉
= k. This gives a monochromatic k-edge and shows that the coloring was not

proper. The number of edges in this hypergraph is
(
2k−1

k

)
, which gives an upper bound O

(
4k√
k

)
.

3Property B was introduced by Felix Bernstein in 1908
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Do we really need all the edges of K(k)
2k−1 for it to be non-2-colorable? Yes, we do! If some edge

e ∈ K(k)
n was missing from the hypergraph, then we could color exactly these k vertices by red

and the remaining k − 1 blue and thus produce a proper 2-coloring.
So the complete k-graph on 2k − 1 vertices is a minimal non-2-colorable k-graph on the fewest
possible number of vertices. Could this be the one also with the fewest number of edges? It is for
k = 2.
To investigate this further we try to give some lower bound. For that we will need to give a proper
2-coloring of any k-graphs with “few” edges. Considering that we do not know anything about the
structure of k-graph to be 2-colored4, this appears to be a daunting task. In such cases we get
used to turning to randomness for the rescue.

Theorem 2.2 (Erdős, 1963). For all k ≥ 2, mB(k) > 2k−1.

Proof. Let H be a k-graph with m ≤ 2k−1 edges. We produce a random coloring crand by
coloring each vertex of H uniformly at random by red and blue with these choice being mutually
independent. We will draw our conclusions from the expectation of the random variableX counting
the number of monochromatic edges of H.
As always, we try to break X into a sum of simple indicator variables. To this end, we introduce a
“bad event“ Ee for each edge e ∈ H, representing that e is monochromatic under crand. We define
Xe to be the indicator random variable of Ee, so we can write X =

∑
e∈HXe. The probability of

Ee and hence the expectation of Xe is 2
2k
, because each of the 2k coloring of e is equally likely and

exactly 2 of them (the constant red and the constant blue) produce a monochromatic e. Then,
using the linearity of expectation,

E[X] =
∑
e∈H

E[Xe] =
∑
e∈H

2

2k
=
|H|

2k−1
.

If the expectation of X is less than 1, that is if |H| < 2k−1, then there must be a coloring c such
that X(c) < 1. Since X takes only integer values, we must also have that X(c) = 0, so c creates
no monochromatic edge. Now if |H| = 2k−1, that is if E[X] = 1, and there is no coloring c with
X(c) = 0, then for every single coloring there must be exactly one monochromatic set. This is
clearly not the case, as the all red coloring for example creates |H| > 1 monochromatic edges.
Consequnetly there must again be a coloring c, with X(c).

Now that we have both an upper and lower bound of exponential order, 4k and 2k, respectively,
we revisit our simple upper bound. Recall that the complete k-graph on 2k − 1 was minimal
with respect to being non-2-colorable. Our plan is to use more vertices but much less edges and
guarantee non-2-colorability via random selection of the edges. This will close the gap between
upper and lower bound in terms of the base of the exponential.

Theorem 2.3 (Erdős, 1964).
mB(k) = O(k22k).

Proof. We choose a vertex set V of size n, to be determined later in the proof. We pick m =
O(k22k) edges uniformly at random, with replacement, from all k-sets in V . We do this so the
choices are mutually independent. This way we create a random k-graph Hrand with at most m
edges. (It is not necessarily equal, because we pick with replacement, so it could happen that some
edge is picked more than once, in which case we just ignore this choice to make our hypergraph
simple.)
Our goal is to show that no 2-coloring is proper. To this end we will show the slightly stronger
(and certainly more easy to analyse) statement that every half of the vertex set V contains a
hyperedge. This implies that no 2-coloring is proper, since one of the two color classes will be of
size at least |V |2 and hence contain an edge.

4You can really imagine that a really evil spirit hands it to you and you still must properly 2-color it.
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We introduce a “bad event” ES for each subset S ∈
(

V
n/2

)
, representing that S does not contain any

of the m random hyperedges we picked independently. What is the probability that a uniformly
random k-set is not contained in S? The number of choices is

(
n
k

)
and among these

(
n/2
k

)
are

contained in S. So

P[ES ] =

((
n
k

)
−
(
n/2
k

)(
n
k

) )m

,

since the choices of the m hyperedges are mutually independent. To estimate P[ES ] from above
we first consider(

n/2
k

)(
n
k

) =

k−1∏
j=0

n
2 − j
n− j

=

k−1∏
j=0

1

2
·
(

1− j

n− j

)
≥ 1

2k

(
1− k

n− k

)k

≥ 1

2k

(
1− k2

n− k

)
.

The last inequality is an application of Bernoulli’s inequality5 stating (1 + x)k ≥ 1 + kx for every
real number k ≥ 1 and real number x ≥ −1. Observe that this bound indicates that we better
choose our n to be more than k2+k, otherwise our lower bound on this probability is negative—not
particularly useful.
We estimate now the existence of a bad event through the union bound:

P

 ⋃
S∈( V

n/2)

ES

 ≤ ∑
S∈( V

n/2)

P [ES ] ≤
(
n

n/2

)
·
(

1− 1

2k

(
1− k2

n− k

))m

≤ 2n · e−m
1

2k

(
1− k2

n−k

)

< e
n− m

2k

(
1− k2

n−k

)

To make the probabilty of the union of bad events less than 1, we make sure that the exponent of
the final estimate is less than 0. This happens exactly when

m > n · 2k · 1

1− k2

n−k
.

Choosing n = 2k2 + k we get that the probability that every half of V contains at least one of

m = (2k2 + k) · 2k · 1

1− k2

2k2+k−k
= (2k2 + 2) · 2k · 2 = O(k22k)

uniformly random k-sets is positive. Consequently there is a way to select m k-edges like that,
which edges constitute a non-2-colorable k-graph.

Remarks. More careful optimization in the final estimates gives mB(k) ≤ (1 + o(1)) e ln 2
4 k22k.

We now have
Ω(2k) = mB(k) = O(k22k),

so we determined the exponential growth rate. The determination of the correct polynomial factor
is still outstanding. Next we will be concerned with that. We will see a very clever, and very
different probabilistic argument to improve the lower bound.

5The special case (1−x)k ≥ 1−kx, for k ∈ N and x ∈ [0, 1], can also be interpreted as the Bonferroni inequality
which essentially amounts to the union bound. It can be proven by interpreting x as the probability of k mutually
independent events.
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