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First let us recall the lower bound of Erdős on the number mB(k): Colour the vertices of H uni-
formly at random. If there are less than 2k−1 edges, then the expected number of monochromatic
edges is less than 1 (by linearity of expectation). If there are more edges then we expect to see
more monochromatic edges.
The first improvements of this lower bound were based on the so called alteration method: roughly
speaking, if we are given a random colouring with few monochromatic edges, we can try to fix it by
recolouring some vertices in the monochromatic edges. Note that one has to be careful: a potential
fix could create further monochromatic edges. The idea is to do the fix randomly as well: when
necessary, recolor vertices randomly. The analysis becomes quite delicate due to the dependece
of the coloring and recoloring on each other. In an influential 1978 paper Beck managed to carry
out an analysis and showed mB(k) ≥ k 1

3−o(1)2k. In 2000 Radhakrishnan and Srinivasan improved
this to mB(k) ≥ k

1
2−o(1)2k. Although their proof is less complicated than Beck’s, technically is

still somewhat delicate.
Here first we discuss a bound weaker than Beck’s, achieved more than three decades later, but by
an incredibly simple approach.

Theorem 0.1 (Pluhár, 2009). mB(k) ≥ ck 1
4 2k

So what is the idea? Recall the greedy coloring that we used in Discrete Math I to produce a
proper (∆ + 1)-coloring for any graph G of maximum degree ∆. This was the procedure which
passed through the vertices in some (arbitrary) order and colored each vertex with the “smallest
available color”. How does this procedure look like when we only have two colors? Well, we always
color a vertex blue (the color 1), unless this would create a monochromatic edge, in which case
we color it red (the color 2).
Note that this algorithm never creates a monochromatic blue edge, but it could create a monochro-
matic red edge. In fact there is a k-graph with only k + 1 edges, such that the greedy coloring
might fail. (HW) This is despite that we already know that for every graph containing k + 1
edges, even 2k−1 edges there is a red/blue-coloring avoiding monochromatic edges. To avoid the
failure or make sure that it does not likely happen, we will select the order in which we color the
vertices not arbitrarily, but randomly.

Proof. Algorithm:
Input: a k-graph H on n-vertices with m edges.

Step 1: Choose an ordering of the vertices v1, ..., vn uniformly at random;

Step 2: Consider the vertices in the order chosen:

(i) If the vertex is the last vertex in all blue edge, colour it red

(ii) Otherwise colour it blue.

Output: The colouring obtained.
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Due to step 2(i) there will be no monochromatic blue edge, but there could be a monochromatic
red edge f . Consider the first vertex in f . We colored this vertex red for a reason: it must be
the last vertex in an otherwise all-blue edge e. So in particular, the Greedy Coloring Algorithm
might fail coloring f properly only if

there is another edge e that intersects f in exactly one vertex which is in the middle
(kth) position among the 2k − 1 elements of e ∪ f .

Our analysis will focus on forbidding the occurrence of such pair of edges.

• We will bound the probability that the first vertex of one edge is the last vertex of another
edge. (Without this, we cannot have an all red edge.)

• Events: for edges e, f ∈ H, let Ee,f be the event that the last vertex of e is the first vertex
of f .

(i) {algorithm fails} ⊆
⋃
e,f

Ee,f , hence P(algorithm fails) ≤ P(
⋃
e,f

Ee,f ) ≤
∑
e,f

P(Ee,f ) by the

union bound.

(i) If |e ∩ f | 6= 1 then Ee,f = ∅.

(iii) if |e ∩ f | = 1 then P [Ee,f ] = (k−1)!·(k−1)!
(2k−1)! . This can be seen by conditioning on the

position of e∪ f within the ordering and on the ordering of the vertices in [n] \ (e∪ f).
The number of orderings with any such condition is (2k− 1)!. Then for Ee,f to happen
we must first place the k − 1 vertices in e \ f in any order, then the vertex in e ∩ f ,
and then the k − 1 vertices of f \ e in some order. This accounts for (k − 1)! · (k − 1)!
possibilities.

• Estimation: Using the Stirling approximation: P(Ee,f ) ≈
√

4π
k 2−2k

By the union bound, P(algorithm fails) ≤
∑
e,f

P(Ee,f ) ≤ (1 + o(1))m2
√

4π
k 2−2k < 1 provided

m <

(
1

4
√

4π
− o(1)

)
k

1
4 2k.

• Conclusion: when m = ck1/42k the algorithm succeeds with positive probability, which
implies that there exists a proper 2-coloring of H.

Now we will present an even better bound, which is a modification of Pluhár’s proof by two
Polish students(!) and reproves the bound of Radhakrishnan and Srinivasan (the best known
lower bound).

Theorem 0.2 (Cherkashin-Kozik, 2014). mB(k) ≥ c
√

k
ln k2k.

Proof (idea). • Idea: randomised greedy algorithm as before. Twist: new "randomness".

• Random ordering:

– For each vertex v, sample a real(!) number xv between 0 and 1, independently.

– Order vertices in increasing order of xv: v before w ⇐⇒ xv < xw.

– In this order, run the greedy algorithm as described above.

• Comparison: This is exaclty the same probability space as in the Pluhár proof: the order
of the vertices is chosen uniformly from all ordering. The continuous setting just makes the
analysis more convenient. (not strictly necessary).
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• Analysis: The algorithm is the same, so we must have some new trick to the analysis. In
the Pluhár proof we had a bad event for every pair of edges that intersect in one vertex in
case this vertex comes in the middle among the vertices of the two edges. We had no idea
how many such pairs are in the hypergraph, so in our proof we assumed that all of them
are like that. Now we reduce this by considering separately those edges whose last vertex
comes unnaturally too far to the left or its first vertex unnaturally too far to the right. This
is an unlikely event, as all vertices are “expected” to come around 1

2 . Coming too far to the
left/right is an unlikely event for an edge, so we take care of these edges by introducing two
new “bad events” for each edges. For the rest of the pairs of the edges however the common
vertex must come closely around 1

2 , also unlikely.

• In Pluhár’s proof: the pairs involving an unnaturally placed edge got counted multiple times.

• This proof: here they get counted once, yielding a better bound.

• Details: HW

• Worst case scenario: Single vertex intersection

– From these proofs it should be clear that edges intersecting in one vertex cause trouble.

– In the HW it was proven that if there is no such pair of edges, then the graph is always
2-colourable.

– having those edges makes mB(k) go from infinity to O(k22k).

• Slightly paradoxical, but Cherkashin and Kozik also showed that the smallest non-2-colourable
k-graph H with |e∩ f | ≤ 1 for every two distinct edges e, f ∈ H must have at least Ω( 4k

ln2(k)
)

edges.
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