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You should try to solve all of the exercises below, but clearly mark which two solutions
you would like us to grade – each problem is worth 10 points. We encourage you to submit
in pairs, but please remember to indicate the author of each solution. Until submission, you
are forbidden to look at the solutions of any of these exercises on the internet.

Exercise 1 A father plays Rock-Paper-Scissors with his daughter. However, there is a
slight twist – while he can choose any of rock, paper or scissors, she is only allowed to
choose rock or paper. The rules otherwise remain the same: paper beats rock, rock beats
scissors, and scissors beats paper. Determine the optimal strategies for each player in these
conditions.

Exercise 2 Ada and Buu play a game. They each pick an integer in {1, 2, 3}. If the sum
of their numbers is odd, Ada pays Buu e10, while if the sum is even, Buu gives Ada e10.

(a) Identify all the (mixed) Nash equilibria. What is the value of the game?

(b) Ada plays an optimal strategy, but notices that Buu is choosing his number uniformly
at random. How should she adjust her strategy to take advantage of his mistake?

(c) After Ada makes this change, Buu starts losing money quickly. Observing that there
are only 4 ways he can win, but 5 ways for Ada to win, he suggests that he should
only have to pay e8 when Ada wins. Should Ada agree to these new terms?

Exercise 3 Let D be a finite collection of congruent closed disks in the plane, such that
any two have a point in common. Show that D has a transversal of size at most 4.

[Hint (to be read backwards): ?noiger siht revoc ew nac woH ?detacol eb sertnec rehto eht
nac erehW .)?yhw( ylevitcepser (1, 0) dna (−1, 0) ta dertnec era owt taht dna ,1 suidar

evah sksid eht emussa nac eW]
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Exercise 4 Recall the DLSZ lemma from the lecture, where we bounded the number of
zeros a polynomial f ∈ F[x1, x2, . . . , xn] inside a finite grid in terms of the total degree of f . In
this exercise we will look at a variant involving individual degrees. Let f ∈ F[x1, x2, . . . , xn]
be a non-zero polynomial, and let di be the degree of f in the variable xi; that is, di is the
maximum power of xi appearing in f . Let S ⊆ F be a finite set with |S| ≥ maxi di.

(a) Prove that f can have at most |S|n −
∏n

i=1 (|S| − di) zeroes in Sn.

(b) Give a polynomial f ∈ R[x1, . . . , xn] (you can pick your favourite n), and a finite subset
S of R, such that the bound in (a) is sharp, whereas the bound from the lecture is not.

(c) Give a polynomial f ∈ R[x1, . . . , xn] (you can again pick your n), and a finite subset S
of R, such that the bound from the lecture is sharp, whereas the bound in (a) is not.

Exercise 5 Let k ≥ 1 be some integer, and let A and B be two 2k × 2k matrices. We wish
to efficiently compute C = AB. We express these in terms of 2k−1 × 2k−1 submatrices:

A =

(
A1,1 A1,2

A2,1 A2,2

)
, B =

(
B1,1 B1,2

B2,1 B2,2

)
, and C =

(
C1,1 C1,2

C2,1 C2,2

)
.

We now define some new matrices:

M1 = (A1,1 + A2,2)(B1,1 +B2,2), M2 = (A2,1 + A2,2)B1,1, M3 = A1,1(B1,2 −B2,2),
M4 = A2,2(B2,1 −B1,1), M5 = (A1,1 + A1,2)B2,2, M6 = (A2,1 − A1,1)(B1,1 +B1,2),

and M7 = (A1,2 − A2,2)(B2,1 +B2,2).

(a) Verify the identities C1,1 = M1 + M4 −M5 + M7, C1,2 = M3 + M5, C2,1 = M2 + M4,
and C2,2 = M1 −M2 +M3 +M6.

(b) One can reuse these identities to calculate the products in the definition of the matrices
Mi, leading to a recursive algorithm for computing the product C = AB. Estimate
the running time (in terms of the number of arithmetic operations) of this algorithm.

(c) For general integers n ≥ 1, how can this algorithm be applied to n× n matrices?

Exercise 6 In lecture we saw a randomised algorithm for determining if there is a perfect
matching in a bipartite graph with n vertices in each part.

(a) Using this algorithm, explain how one can find a perfect matching, if it exists, in such
a graph.

(b) If it takes O(nω) operations to find the determinant of an n × n matrix, how many
operations does your matching-finding algorithm require?
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Exercise 7 (Bonus 10 pnts) This exercise will show you how to extend our randomised
perfect matching algorithm for bipartite graphs to general graphs. Let G = ([n], E) be a
graph on n vertices. As before, we introduce a new variable xij for each edge {i, j} ∈ E.
The Tutte matrix A of the graph G is defined as A = (aij)i,j∈[n], where

aij =


+xij if i < j and {i, j} ∈ E,
−xji if i > j and {i, j} ∈ E,
0 otherwise.

(a) Find both the Tutte matrix A and its determinant det(A) when G = K3 and G = C4.

(b) Show det(A) is not the zero polynomial if G has a perfect matching.

We can think of a permutation π ∈ Sn in terms of its cycle structure1, which allows us to
define sgn(π) = (−1)# even cycles in π. We then have det(A) =

∑
π∈Sn

sgn(π)
∏

i∈[n] aiπ(i).

(c) If we think of isolated edges as cycles of length two, show that any nonzero monomial
in this expansion of det(A) corresponds to a partition of [n] into vertex-disjoint cycles
in G.

(d) By reversing the direction of an odd cycle, show that if det(A) is not the zero polyno-
mial, then there is some partition of [n] into vertex-disjoint cycles in G, all of which
have even length.

(e) Deduce that det(A) is not the zero polynomial if and only if G has a perfect matching,
and give a randomised algorithm for testing for the existence of a perfect matching in
G.

1For example, if n = 6 and π(1) = 2, π(2) = 5, π(3) = 4, π(4) = 3, π(5) = 1 and π(6) = 6, then π has
cycle structure (1 2 5) (3 4) (6).
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