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Exercise Sheet 7

Due date: 12:30, 5th December

You should try to solve all of the exercises below, but clearly mark which two solutions
you would like us to grade – each problem is worth 10 points. We encourage you to submit
in pairs, but please remember to indicate the author of each solution. Until submission, you
are forbidden to look at the solutions of any of these exercises on the internet.

Exercise 1 In this exercise you will finish the proof of Baranyai’s theorem using network
flows that was discussed in the lectures.

Recall that for 1 ≤ ` ≤ n, we sought a collection of M =
(
n−1
k−1

)
m-partitions Ai of [`]1,

where m = n
k
, such that every set F ⊆ [`] appeared (with multiplicity) in exactly

(
n−`
k−|F |

)
of the m-partitions. We obtain such a partition via induction on `, where the base case of
` = 0 is true by taking each Ai to be m copies of ∅. Now, for the induction step, given such
a collection of m-partitions for ` ≤ n−1, we built a network ( ~D, s, t, c), with ~D as a directed

multigraph, where V ( ~D) = {s, t} ∪ {Ai : i ∈ [M ]} ∪ {F : F ⊆ [`]} and

~E( ~D) = {(s,Ai) : i ∈ [M ]} ∪ {(Ai, F ) : i ∈ [M ], F ∈ Ai} ∪ {(F, t) : F ⊆ [`]},

where between each Ai and ∅ we add as many multiple edges as the number of times ∅
appears in Ai. The capacities were given by

c (~e) =


1 ~e = (s,Ai)(

n−(`+1)
k−(|F |+1)

)
~e = (F, t)

M + 1 otherwise

.

(a) Prove that the flow f defined by

f (~e) =


1 ~e = (s,Ai)
k−|F |
n−` ~e = (Ai, F )(
n−(`+1)
k−(|F |+1)

)
~e = (F, t)

is a feasible maximum flow of value M .

(b) Use the integrality theorem to find a unique set Fi ∈ Ai for each i ∈ [M ]. Then form
the m-partitions A′1, . . . ,A′M of [`+1] by adding the element `+1 to the set Fi in each
Ai. Show that this collection of m-partitions of [`+1] satisfies the required conditions.

1An m-partition of a set X is a multiset of pairwise disjoint subsets of X, some of which might be empty,
whose union is X. Note that because of pairwise disjointness, only ∅ can occur with multiplicity more than
1 in an m-partition.
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Exercise 2 Recall that a 3-CNF formula consists of clauses with exactly 3 literals, each
corresponding to a different variable, where a literal is either a variable xi or its negation
¬xi. For example, f(x1, x2, x3, x4, x5) = (x1∨x2∨¬x3)∧ (x2∨¬x3∨x5)∧ (x1∨¬x4∨¬x5) is
a 3-CNF. We say that a 3-CNF formula is satisfiable if there exists a True/False assignment
to the variables that makes the formula True.

For a clause C = a ∨ b ∨ c, define the OR-gadget as the following graph, where the
left-most vertices are the input nodes and the right-most vertex is called the output node.

a

b

c

Now let φ be a 3-CNF with C1, . . . , Cm as its clauses and x1, . . . , xn as its variables.
Construct a graph G as follows. First create a triangle in G with vertices labelled T, F,B.
For every literal xi, introduce two new vertices vi and vi, and create a triangle B, vi, vi. Now
for each Ci create an OR-gadget, where the input nodes are the vertices corresponding to
the literals appearing in Ci, and add an edge between the output node and F , and an edge
between the output node and B.

(a) Prove that φ is satisfiable if and only if the graph G is 3-colorable.

(b) The 3-SAT problem is to decide whether a 3-CNF is satisfiable or not. We know from
the Cook-Levin theorem that 3-SAT is NP-complete. Deduce that 3-colorability is NP-
complete.

Exercise 3 Let G be a graph with the property that every two odd cycles in G always
share a vertex. Prove that χ(G) ≤ 5.

(Bonus) Clearly K5 shows that this bound is tight. Find a graph G with χ(G) = 4 satisfying
this property. Can you find a K5-free graph with chromatic number 5 in which every two
odd cycles share a vertex?

Exercise 4 Prove that any graph with chromatic number equal to k has at least
(
k
2

)
edges.

Deduce that a graph on m edges has chromatic number at most O(
√
m).

Exercise 5 Prove that for every triangle free graph G, the trivial upper bound χ(G) ≤
∆(G) + 1 can be strengthened to:

χ(G) ≤ 3

⌈
∆(G) + 1

4

⌉
.
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[Hint (to be read backwards): 3 tsom ta rebmun citamorhc sah strap eht fo hcae no
hpargbus decudni eht taht wohs dna desiminim si trap hcae nihtiw segde fo rebmun eht

taht hcus strap fo rebmun d(∆(G) + 1)/4e otni secitrev fo tes eht noititraP]

Exercise 6 In this exercise we will show that Hajós’ conjecture is false in general. Recall
that the conjecture states that for any graph G and any positive integer k, χ(G) ≥ k implies
that G contains a Kk subdivision.

(a) Show that for the following 15 vertex graph G, we have χ(G) = 8 and G contains no
subdivisions of K8. Here thick edges between the circles mean that every vertex in one
circle is adjacent to every vertex in the other.

(b) Prove that Hajós’ conjecture is false for all k ≥ 8.

(c) (Bonus) Construct a graph with chromatic number 7 that does not contain any K7

subdivision.
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