
Recall: Matchings

A matching is a set of (non-loop) edges with no sha-
red endpoints. The vertices incident to an edge of a
matching M are saturated by M , the others are un-
saturated. A perfect matching of G is matching which
saturates all the vertices.

Examples. Kn,m,Kn, Petersen graph, Qk; graphs wi-
thout perfect matching

A maximal matching cannot be enlarged by adding
another edge.

A maximum matching of G is one of maximum size.

Example. Maximum 6= Maximal
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Recall: Characterization of maximum matchings

Let M be a matching. A path that alternates between
edges in M and edges not in M is called an M -
alternating path.
An M -alternating path whose endpoints are unsatu-
rated by M is called an M -augmenting path.

Theorem(Berge, 1957) A matching M is a maximum
matching of graphG iffG has noM -augmenting path.

Proof. (⇒) Easy.
(⇐) Suppose there is no M -augmenting path and let
M∗ be a matching of maximum size.
What is then M4M∗???

Lemma Let M1 and M2 be matchings of G. Then
each connected component of M14M2 is a path
or an even cycle.

For two sets A and B, the symmetric difference is A4B =

(A \B) ∪ (B \A).
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Recall: Hall’s Condition and consequences

Theorem (Marriage Theorem; Hall, 1935) Let G be a
bipartite (multi)graph with partite sets X and Y . Then
there is a matching in G saturating X iff |N(S)| ≥ |S|
for every S ⊆ X.

Proof. (⇒) Easy.

(⇐) Not so easy. Find an M -augmenting path for any
matching M which does not saturate X.
(Let U be the M -unsaturated vertices in X. Define

T := {y ∈ Y : ∃M -alternating U, y-path},
S := {x ∈ X : ∃M -alternating U, x-path}.

Unless there is anM -augmenting path, S∪U violates
Hall’s condition.)

Corollary. (Frobenius (1917)) For k > 0, every k-
regular bipartite (multi)graph has a perfect matching.
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Recall: Application: 2-Factors

A factor of a graph is a spanning subgraph. A k-factor
is a spanning k-regular subgraph.

Every regular bipartite graph has a 1-factor.

Not every regular graph has a 1-factor.

But...

Theorem. (Petersen, 1891) Every 2k-regular graph
has a 2-factor.

Proof. Use Eulerian cycle of G to create an auxiliary
k-regular bipartite graph H, such that a perfect mat-
ching in H corresponds to a 2-factor in G.
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Recall: Graph parameters

α′(G) = size of the largest matching in G

A vertex cover of G is a set Q ⊆ V (G) that contains
at least one endpoint of every edge.
β(G) = size of the smallest vertex cover in G

Claim. For every graph G, β(G) ≥ α′(G).

Theorem. (König (1931), Egerváry (1931))
If G is bipartite then β(G) = α′(G).

Proof of König’s Theorem: For any minimum vertex
cover Q, apply Hall’s Condition to match Q ∩ X into
Y \Q and Q ∩ Y into X \Q.

Remarks
1. König’s Theorem ⇒ For bipartite graphs there
always exists a vertex cover proving that a particular
matching of maximum size is really maximum.

2. This is NOT the case for general graphs: C5.
5



How to find a maximum matching
in bipartite graphs?

Augmenting Path Algorithm

Input. A bipartite graph G with partite sets X and Y ,
a matching M in G.

Output. EITHER an M -augmenting path OR a certifi-
cate (a cover of the same size) that M is maximum.

Idea. Let U be set of unsaturated vertices in X.
Explore M -alternating paths from U , letting S ⊆ X

and T ⊆ Y be the sets of vertices reached.
As a vertex is reached, record the previous vertex on
the M -alternating path from which it was reached.
Mark vertices of S that have been fully explored for
path extensions (say, put them into a set Q).

Initialization. S = U , Q = ∅, and T = ∅.
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Iteration.
IF Q = S THEN

stop and report that M is a maximum matching
and T ∪ (X \ S), is a cover of the same size.

ELSE

select x ∈ S \Q and
FORALL y ∈ N(x) with xy 6∈M DO

IF y is unsaturated, THEN

stop and report an M -augmenting path
from U to y.

ELSE

∃w ∈ X with yw ∈M . Update
T := T ∪ {y} (y is reached from x),
S := S ∪ {w} (w is reached from y).

update Q := Q ∪ {x}
iterate.

Theorem. Repeatadly applying the Augmenting Path
Algorithm to a bipartite graph produces a maximum
matching and a minimum vertex cover.

If G has n vertices and m edges, then this algorithm
finds a maximum matching in O(nm) time.
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Proof of correctness

If Augmenting Path Algorithm does what it supposed
to, then after at most n/2 application we can produce
a maximum matching.
Why does the APA terminate? It touches each edge
at most once. Hence running time is O(nm).

What if an M -augmenting path is returned? It is OK,
since y is an unsaturated neighbor of x ∈ S, and x
can be reached from U on an M -alternating path.

What if the APA returnsM as maximum matching and
T ∪ (X \ S) as minimum cover?
Since S = Q, all edges leaving S were explored, so
there is no edge between S and Y \ T .
• Hence T ∪ (X \ S) is indeed a cover.

• |M | = |T |+ |X \ S| (By selection of S and T .)

Key Lemma If, in any graph, a cover and a matching
have the same size, then they are both optimal.

|M | ≤ α′(G) ≤ β(G) ≤ |T ∪ (X \ S)| = |M |.
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How to find a maximum weight matching in a
bipartite graph?

In the maximum weighted matching problem a non-
negative weight wi,j is assigned to each edge xiyj of
Kn,n and we seek a perfect matching M to maximize
the total weight w(M) =

∑
e∈M w(e).

With these weights, a (weighted) cover is a choice of
labels u1, . . . , un and v1, . . . , vn, such that ui+ vj ≥
wi,j for all i, j. The cost c(u, v) of a cover (u, v) is∑
ui+

∑
vj. The minimum weighted cover problem is

that of finding a cover of minimum cost.

Duality Lemma For a perfect matchingM and a weigh-
ted cover (u, v) in a bipartite graphG, c(u, v) ≥ w(M).
Also, c(u, v) = w(M) iffM consists of edges xiyπ(i)
such that ui + vπ(i) = wi,π(i) for some permutation
π ∈ Sn. In this case, M and (u, v) are both optimal.
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The algorithm

The equality subgraphGu,v for a weighted cover (u, v)
is the spanning subgraph of Kn,n whose edges are
the pairs xiyj such that ui + vj = wi,j. In the cover,
the excess for i, j is ui+ vj − wi,j.

Hungarian Algorithm

Input. A matrix (wi,j) of weights on the edges ofKn.n
with partite sets X and Y .

Idea. Iteratively adjusting a cover (u, v) until the equa-
lity subgraph Gu,v has a perfect matching.

Initialization. Let ui = max{wi,j : j = 1, . . . , n}
and vj = 0.
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Iteration.
Form Gu,v and use APA to find a maximum matching M
and minimum vertex cover Q = T ∪R, where
R = X ∩Q and T = Y ∩Q.
IF M is a perfect matching, THEN

stop and report M as a maximum weight matching
and (u, v) as a minimum cost cover

ELSE
ε := min{ui+ vj − wi,j : xi ∈ X \R, yj ∈ Y \ T}
Update u and v:

ui := ui − ε if xi ∈ X \R
vj := vj + ε if yj ∈ T

Iterate

Remarks. By properties of APA:

• |Q| = |M |, no M -edge is covered by twice by Q
• T = {y ∈ Y : there is an M -alternating (U, y)-path}
• R = {x ∈ X : there is NO M -alternating (U, x)-path}

where U = {x ∈ X : x is M -unsaturated}.

Theorem The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover.
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The Assignment Problem — An example


1 2 3 4 5
6 7 8 7 2
1 3 4 4 5
3 6 2 8 7
4 1 3 5 4



Excess Matrix Equality Subgraph

0 0 0 0 0
5
8
5
8
5


4 3 2 1 0
2 1 0 1 6
4 2 1 1 0
5 2 6 0 1
1 4 2 0 1


T T T

TT T

ε = 1
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0 0 1 1 1
4
7
4
7
4


3 2 2 1 0
1 0 0 1 6
3 1 1 1 0
4 1 6 0 1
0 3 2 0 1


R

T T T

R

T TT

ε = 1

1 0 1 2 2
3
7
3
6
3


3 1 1 1 0
2 0 0 2 7
3 0 0 1 0
4 0 5 0 1
0 2 1 0 1



DONE!!
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The Duality Lemma states that if w(M) = c(u, v) for
some cover (u, v), then M is maximum weight.

We found a maximum weight matching (transversal).
The fact that it is maximum is certified by the indicated
cover, which has the same cost:

1 0 1 2 2
3
7
3
6
3


1 2 3 4 5
6 7 8 7 2
1 3 4 4 5
3 6 2 8 7
4 1 3 5 4


w(M) = 5+ 7+ 4+ 8+ 4 = 28 =

= 1+ 0+ 1+ 2+ 2+

3+ 7+ 3+ 6+ 3 = c(u, v)
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Hungarian Algorithm — Proof of correctness

Proof. If the algorithm ever terminates and Gu,v is the
equality subgraph of a (u, v), which is indeed a cover,
then M is a m.w.m. and (u, v) is a m.c.c. by Duality
Lemma.

Why is (u, v), created by the iteration, a cover?

Let xiyj ∈ E(Kn,n). Check the four cases.
xi ∈ R, yj ∈ Y \ T ⇒ ui and vj do not change.

xi ∈ R, yj ∈ T ⇒ ui does not change
vj increases.

xi ∈ X \R, yj ∈ T ⇒ ui decreases by ε,
vj increases by ε.

xi ∈ X \R, yj ∈ Y \ T ⇒ ui+ vj ≥ wi,j
by definition of ε.

16



Why does the algorithm terminate?

• # of vertices reached from U by M -alternating
paths grows
(only edges between S and T can become non-edges du-

ring an iteration and these do not participate in such paths.)

• after ≤ n iteration an M -unsaturated y ∈ Y is
reached with a (U, y)-augmenting path

• max matching gets larger; can happen ≤ n-times

• after ≤ n2 iteration Gu,v has perfect matching


