Recall: Matchings

A matching is a set of (non-loop) edges with no sha-
red endpoints. The vertices incident to an edge of a
matching M are saturated by M, the others are un-
saturated. A perfect matching of G is matching which
saturates all the vertices.

Examples. Ky m, Kn, Petersen graph, Q; graphs wi-
thout perfect matching

A maximal matching cannot be enlarged by adding
another edge.

A maximum matching of G is one of maximum size.

Example. Maximum %= Maximal



Recall: Characterization of maximum matchings

Let M be a matching. A path that alternates between
edges in M and edges not in M is called an M-
alternating path.

An M-alternating path whose endpoints are unsatu-
rated by M is called an M- path.

Theorem(Berge, 1957) A matching M is a maximum
matching of graph G iif G has no M-augmenting path.

Proof. (=-) Easy.

(<=) Suppose there is no M-augmenting path and let
M* be a matching of maximum size.

What is then M AM*?2?

Lemma Let M7 and M», be matchings of G. Then
each connected component of M1 A M-, is a path
or an even cycle.

For two sets A and B, the symmetric difference is AAB =
(A\B)U(B\ A).



Recall: Hall's Condition and consequences__

Theorem (Marriage Theorem; Hall, 1935) Let G be a
bipartite (multi)graph with partite sets X and Y. Then
there is a matching in G saturating X iff |[N(S)| > |S]
for every S C X.

Proof. (=-) Easy.

(«=) Not so easy. Find an M-augmenting path for any
matching M which does not saturate X.
(Let U be the M-unsaturated vertices in X. Define

T = {yeY: 3 M- U, y-path},
S = {xeX: I M- U, xz-path}.

Unless there is an M -augmenting path, SUU violates
Hall’s condition.)

Corollary. (Frobenius (1917)) For k > 0, every k-
regular bipartite (multi)graph has a perfect matching.



Recall: Application: 2-Factors

A factor of a graph is a spanning subgraph. A .-factor
iS a spanning k-regular subgraph.

Every regular bipartite graph has a 1-factor.
Not every regular graph has a 1-factor.
But...

Theorem. (Petersen, 1891) Every 2k-regular graph
has a 2-factor.

Proof. Use Eulerian cycle of GG to create an auxiliary
k-regular bipartite graph H, such that a perfect mat-
ching in H corresponds to a 2-factor in G.



Recall: Graph parameters

= size of the largest matching in G

A vertex cover of G is a set Q C V (G) that contains
at least one endpoint of every edge.
= size of the smallest vertex cover in G

Claim. For every graph G, 3(G) > o/(G).

Theorem. (Konig (1931), Egervary (1931))
If G is bipartite then

Proof of Konig’s Theorem: For any minimum vertex
cover @, apply Hall’'s Condition to match QQ N X into
Y\Qand @ NYinto X \ Q.

Remarks

1. Konig’'s Theorem =- For bipartite graphs there
always exists a vertex cover proving that a particular
matching of maximum size is really maximum.

2. This is NOT the case for general graphs: Cs.



How to find a maximum matching
In bipartite graphs?

Augmenting Path Algorithm

Input. A bipartite graph GG with partite sets X and Y,
a matching M in G.

Output. EITHER an M-augmenting path OR a certifi-
cate (a cover of the same size) that M is maximum.

Idea. Let U be set of unsaturated vertices in X.
M -alternating paths from U, letting S C X
and 7' C Y be the sets of vertices reached.
As a vertex is reached, record the previous vertex on
the M-alternating path from which it was reached.
vertices of S that have been fully for
path extensions (say, put them into a set Q).

Initialization. S = U, Q = 0, and T = 0.



Iteration.
IF Q = S THEN
stop and report that M is a maximum matching
and T"U (X \ 9), is a cover of the same size.
ELSE
selectx € S\ Q and
FORALL y € N(x) with zy ¢ M DO
IF vy is unsaturated, THEN
stop and report an M-augmenting path
from U to y.
ELSE
Jw € X with yw € M. Update
T :=T U{y} (y is reached from z),
S = SU{w} (wis reached from y).
update Q := Q U {x}
iterate.

Theorem. Repeatadly applying the Augmenting Path
Algorithm to a bipartite graph produces a maximum
matching and a minimum vertex cover.

If G has n vertices and m edges, then this algorithm
finds a maximum matching in O(nm) time.






Proof of correctness

If Augmenting Path Algorithm does what it supposed
to, then after at most n /2 application we can produce
a maximum matching.

Why does the APA terminate? It touches each edge
at most once. Hence running time is O(nm).

What if an M -augmenting path is returned? It is OK,
since y is an unsaturated neighbor of x € S, and x
can be reached from U on an M -alternating path.

What if the APA returns M as maximum matching and
T U (X \ S) as minimum cover?

Since S = (@), all edges leaving S were explored, so
there is no edge between Sand Y \ 7.

e Hence TU (X \ S) is indeed a cover.

o [M|=|T|4+|X\S| (ByselectionofSandT.)

Key Lemma If, in any graph, a cover and a matching
have the same size, then they are both optimal.

M| <a(G) < B(G) < |TU(X\9)| = |M|.
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How to find a maximum weight matching in a
bipartite graph?

In the maximum weighted matching problem a non-
negative weight w; ; is assigned to each edge x;y; of
Kn,n and we seek a perfect matching M to maximize
the total weight w(M) = > .car w(e).

With these weights, a (weighted) cover is a choice of
labels u1,...,un and vy, ..., vy, such that u; +v; >
w; ; for all 4, 5. The cost c(u,v) of a cover (u,v) is
> u;~+ > vj. The minimum weighted cover problem is
that of finding a cover of minimum cost.

Duality Lemma For a perfect matching M and a weigh-
ted cover (u, v) in a bipartite graph G, c(u,v) > w(M).
Also, c(u,v) = w(M) iff M consists of edges z;y,. ;)
such that u; 4 v, ;) = w; (4 for some permutation
m € Sp. In this case, M and (u,v) are both optimal.
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The algorithm

The equality subgraph G, for a weighted cover (u, v)
IS the spanning subgraph of K, » whose edges are
the pairs x;y; such that u; + v; = w; ;. In the cover,
the excess for 4, 7 is u; + v; — w; ;.

Hungarian Algorithm

Input. A matrix of weights on the edges of Ky, .,
with partite sets X and Y.

Idea. Iteratively adjusting a cover until the equa-
lity subgraph G, has a perfect matching.

Initialization. Let u; = max{w;; : j = 1,...,n}
and Vj = 0.
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Iteration.

Gu,v and use APA to a maximum matching M
and minimum vertex cover Q = 1" U R, where
R=XnNnQandT =Y NQ.

IF M is a perfect matching, THEN
stop and report M as a maximum weight matching
and (u,v) as a minimum cost cover
ELSE
€= min{ui—l—vj — Wj; . Tj € X\R,y] ceY\T}
Update v and v:
U; :=u7;—eifacz-€X\R
v :’UJ—|—€|ny cT
Iterate

Remarks. By properties of APA:

e |Q| = |M]|, no M-edge is covered by twice by Q
o T'={y €Y :thereis an M-alternating (U, y)-path}

e R = {x € X : thereis NO M-alternating (U, z)-path}
where U = {x € X : z is M-unsaturated}.

Theorem The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover.
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The Assignment Problem — An example
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The Duality Lemma states that if w(M) = c¢(u,v) for
some cover (u,v), then M is maximum weight.

We found a maximum weight matching (transversal).
The fact that it is maximum is certified by the indicated
cover, which has the same cost:
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54+74+4+8+4=
1+0+14+24 2+
3+74+34+6+4+3=c(u,v)

w(M)
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Hungarian Algorithm — Proof of correctness

Proof. If the algorithm ever terminates and Gy is the
equality subgraph of a (u, v), which is indeed a cover,
then M is a m.w.m. and (u,v) is a m.c.c. by Duality
Lemma.

Why is (u,v), created by the iteration, a cover?
Let z;y; € E(Kn,nn). Check the four cases.
x; € R, y; € Y \T = u;andwv;do notchange.

z; € R, y; €T U gloes not change
v; increases.

z; € X\R, y;€T U _decreases by e,
v; Increases by e.

r; € X\ R, y;€ Y \T = Ui T Uj = Wi
v \ Yj \ by definition of e.
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Why does the algorithm terminate?

e # of vertices reached from U by M-alternating
paths grows
(only edges between S and T' can become non-edges du-
ring an iteration and these do not participate in such paths.)

e after < n iteration an M-unsaturated y € Y is
reached with a (U, y)-augmenting path

e max matching gets larger; can happen < n-times

o after < n? iteration G, has perfect matching



