
Connectivity

A separating set (or vertex cut) of a graph G is a set
S ⊆ V (G) such that G−S is disconnected. For G 6=
Kn, the connectivity of G is

κ(G) := min{|S| : S is a vertex cut}.

By definition, κ(Kn) := n− 1.

A graph G is called k-connected if v(G) ≥ k+ 1 and
there is no vertex cut of size k − 1. (i.e. κ(G) ≥ k)

Initial bounds: κ(G) ≤ v(G)− 1 (equality only for Kn)
κ(G) ≤ δ(G)

Examples: κ(Kn,m) = min{n,m}
κ(Qd) = d

Extremal problem: What is the minimum number of
edges in a k-connected graph?

Theorem. For every n, the minimum number of edges
in a k-connected graph is dkn/2e.
Proof: HW
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A sufficient condition for Hamiltonicity via κ

Theorem. (Erdős-Chvátal, 1972) If κ(G) ≥ α(G),
then G is Hamiltonian. (Unless G = K2)

Proof. Let k = κ(G) > 1. Let C = (v1, . . . v`) be the
longest cycle.

δ(G) ≥ k ⇒ length(C) ≥ k + 1

Let H be a component of G− C.

Let vi1, . . . vik ∈ V (C) be vertices with an edge to
V (H). Then:

- U = {vi1+1, . . . , vik+1} is independent

- No edge between U and V (H).

⇒ α(G) ≥ k + 1. 2
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Edge-connectivity

Def. A set F ⊆ E(G) of edges of a multigraph G is a
disonnecting set if G− F is disconnected. The edge-
connectivity of G is

κ′(G) := min{ |F | : F is a disonnecting set}.
A graph G is called k-edge-connected if κ′(G) ≥ k.

An edge cut of a multigraph G is an edge-set of the
form [S, S̄], with ∅ 6= S 6= V (G) and S̄ = V (G) \ S.

..., where for S, T ⊆ V (G), [S, T ] := {xy ∈ E(G) : x ∈ S, y ∈ T}.

Obs. A minimal disconnecting set is an edge cut.
In particular,

κ′(G) = min{ |[S, S̄]| : ∅ ⊂ S ⊂ V (G)}.
and G is k-edge-connected iff there is no edge cut of
size ≤ k − 1.

Theorem. (Whitney, 1932) IfG is a simple graph, then

κ(G)≤κ′(G)≤δ(G).

Homework. Example of a graph G with κ(G) = k,
κ′(G) = l, δ(G) = m, for any 0 < k ≤ l ≤ m.
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Recall: Characterization of 2-connectivity

Decision problem: “Is G k-connected?” is in co-NP.
Is the problem also in NP? How about P?

Remark. k-connectivity is in P when k is a constant:
One checks for each subset of size≤ (k−1) whether
its deletion results in a disconnected graph. (There
are polynomially many subsets to check, each check
is done by BFS or DFS in poly-time.)
But this does not work when k = k(n) is a function
of n tending to∞. (The number of subsets to check is
superpolynomial.)

An NP-co-NP-characterization of k-connectivity?

For k = 2: a simple sufficient condition, which pre-
vents that the removal of a single vertex disconnects
a graph G, is that for any pair u, v ∈ V (G) there are
two disjoint ways to get from u to v.

Surprisingly, this condition is also necessary!
Theorem. (Whitney,1932) A graph G is 2-connected
iff for every u, v ∈ V (G) there exist two internally dis-
joint u, v-paths in G.
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Proof: Create two internally disjoint u, v-paths using
induction on dist(u, v) (the length of a shortest u, v-
path). 2

Corollary 2-connectivity is in NP∩co-NP.

A strengthening of Whitney’s Thm.
A graph G is 2-connected iff δ(G) ≥ 1 and every pair
of edges of G lies on a common cycle.

Expansion Lemma. LetG′ be a supergraph of a k-connected
graph G obtained by adding one vertex to V (G) with at least
k neighbors.
Then G′ is k-connected as well.

An obvious way to generalize Whitney’s sufficient con-
dition in order to ensure k-connectivity is if we requi-
re that between any two vertices there are k disjoint
ways to get from one to the other. This also turns out
to be necessary, but the proof is much less obvious!

(Global-Vertex)-Menger Theorem. A graph G is k-
connected iff for every u, v ∈ V (G) there exist k pair-
wise internally disjoint u, v-paths in G.

Corollary “k-connectivity” is in NP∩co-NP for any func-
tion k = k(n)



Menger’s Theorem

Given x, y ∈ V (G), a set S ⊆ V (G) \ {x, y} is an
x, y-separating set if G− S has no x, y-path.
A set P of paths is called pairwise internally disjoint
(p.i.d.) if for any two path P1, P2 ∈ P, P1 and P2 have
no common internal vertices.
Define

κ(x, y) := min{|S| : S is an x, y-separating set,} and
λ(x, y) := max{|P| : P is a set of p.i.d. x, y-paths}

Local Vertex-Menger Theorem (Menger, 1927) Let
x, y ∈ V (G), such that xy 6∈ E(G). Then

κ(x, y) =λ(x, y).

Proof. Coming soon. (Using much more general ma-
chinery.)

Corollary (Global Vertex-Menger Theorem) A graph
G is k-connected iff for any two vertices x, y ∈ V (G)
there exist a set of k p.i.d. x, y-paths.

Proof: Lemma. For every e ∈ E(G), κ(G− e) ≥ κ(G)− 1.
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Edge-Menger

Given x, y ∈ V (G), a set F ⊆ E(G) is an x, y-
disconnecting set if G− F has no x, y-path. Define

κ′(x, y) := min{|F | : F is an x, y-disconnecting set,}
λ′(x, y) := max{|P| : P is a set of p.e.d.∗ x, y-paths}

∗ p.e.d. means pairwise edge-disjoint

Local Edge-Menger Theorem For all x, y ∈ V (G),

κ′(x, y) =λ′(x, y).

Proof. HW

Corollary (Global Edge-Menger Theorem) Multigraph
G is k-edge-connected iff there is a set of k p.e.d.x, y-
paths for any two vertices x and y.

Corollary “k-edge-connectivity” is in NP∩co-NP for
any function k = k(n)
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Network flows

Network (D, s, t, c), where
D = (V,E) is a directed multigraph,
s ∈ V is the source, t ∈ V is the sink,
c : E → IR≥0 is the capacity function.

A function f : E → IR is called a flow. Define

f+(v) :=
∑
e−=v

f(e)

f−(v) :=
∑
e+=v

f(e), where e = (e−, e+).

Flow f is feasible if
(i) f+(v) = f−(v) for every v 6= s, t (conservation

constraints), and
(ii) 0 ≤ f(e) ≤ c(e) for every e ∈ E (capacity cons-

traints).

value of flow, val(f) := f−(t)− f+(t).

WANT:
A maximum flow: feasible flow with maximum value
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Example: finding a max flow

Starting with the 0-flow

1

1

4 4

1

3

3

1

3

3

A way to prove maximality of a flow −→

−→ capacity of source/sink cuts
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Source/sink cuts

[S, S̄] := {(u, v) ∈ E(D) : u ∈ S, v ∈ S̄} is a
source/sink cut if s ∈ S and t ∈ S̄

capacity of cut: cap(S, S̄) :=
∑
e∈[S,S̄] c(e).

Weak Duality Lemma. If f is a feasible flow and [S, S̄]

is a source/sink cut, then

val(f) ≤ cap(S, S̄).

Proof. cap(S, S̄) =
∑

e∈[S,S̄]

c(e)

≥
∑

e∈[S,S̄]

f(e)

≥
∑

e∈[S,S̄]

f(e)−
∑

e∈[S̄,S]

f(e)

= val(f).2

We used the capacity constraints and the feeling that
the last equality must be true by the conservation cons-
traints ... Proof (HW?)
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The value of a feasible flow

Conservation Lemma. If f is any feasible flow, s ∈
Q, t /∈ Q, then∑

e∈[Q,Q̄]

f(e)−
∑

e∈[Q̄,Q]

f(e) = val(f).

Proof. By induction on |Q̄|. If |Q̄| = 1 then Q̄ = {t}
and by definition f−(t)− f+(t) = val(f).

Let |Q̄| ≥ 2 and let x ∈ Q̄, x 6= t.
Define R = Q ∪ {x}. Since |R̄| < |Q̄|, by induction

val(f) =
∑

e∈[R,R̄]

f(e)−
∑

e∈[R̄,R]

f(e)

=
∑

e∈[Q,Q̄]

f(e)−
∑

e∈[Q̄,Q]

f(e) +
∑
u∈Q

f(xu)

−
∑
u∈Q

f(ux) +
∑
v∈R̄

f(xv)−
∑
v∈R̄

f(vx)

=
∑

e∈[Q,Q̄]

f(e)−
∑

e∈[Q̄,Q]

f(e) + f+(x)− f−(x)

Remark. val(f) = f+(s)− f−(s).
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Improving a feasible flow: f -augmenting paths

G: underlying undirected multigraph of network D

s, t-path s=v0, e1, v1, e2 . . . vk−1, ek, vk= t in G
is an f -augmenting path, if for every i

• f(ei) < c(ei) if ei is a “forward edge”

• f(ei) > 0 if ei is a “backward edge”

Tolerance of the path P is min{ε(e) : e ∈ E(P )},
where ε(e) = c(e)− f(e) if e is forward, and

ε(e) = f(e) if e is backward.

Augmenting Lemma. Let f be feasible and P be an
f -augmenting path with tolerance z. Define
f ′(e) := f(e) + z if e is forward,
f ′(e) := f(e)− z if e is backward.
f ′(e) := f(e) if e /∈ E(P ),
Then f ′ is feasible with val(f ′) = val(f) + z.
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Max Flow-Min Cut Theorem

Cut Lemma. For a feasible flow f define the subset

Sf := {v ∈ V : ∃ f -augmenting path∗ from s to v}.
If t /∈ S, then

cap(Sf , S̄f) =
∑

e∈[Sf ,S̄f ]

f(e)−
∑

e∈[S̄f ,Sf ]

f(e).

Max Flow-Min Cut Theorem (Ford-Fulkerson, 1956)

max val(f) = min cap(S, S̄).

Proof.
≤: Weak Duality.
≥: Let g be a max flow. Then g has no augmenting
path, so t /∈ Sg, and then by the Cut Lemma and the
Conservation Lemma

cap(Sg, S̄g) =
∑

e∈[Sg,S̄g]

g(e)−
∑

e∈[S̄g,Sg]

g(e)

= val(g).2
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Application 1: Edge-Menger Theorem

Local-Edge-Menger Theorem For all x, y ∈ V (G),

κ′(x, y) = λ′(x, y).

Proof. ≤ Build network (D, x, y, c) where
V (D) := V (G)
E(D) := {(u, v), (v, u) : uv ∈ E(G)} and
c(e) := 1 for all e ∈ E(D).

• For any S ⊂ V with x ∈ S and y /∈ S, we have
|[S, S̄]| = cap(S, S̄). Hence
κ′(x, y) = mincap(S, S̄) = maxval(f).
• each set of p.e.d. path determines a feasible flow of
value λ′(x, y) ≤ maxval(f).

A unit flow is a feasible flow that has value 1 along an
s, t-path and 0 everywhere else.
Unit Flows Lemma. If f is a feasible flow with inte-
ger values, then there exists m := val(f) unit flows
g1, . . . gm, such that f = g1 + · · ·+ gm.
• We know that max val(f) = κ′(x, y) is an integer.
But, is there a flow with integer values that realizes
this??? (and hence is the sum of κ′(x, y) unit flows?)
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Characterization of maximum flows

Algorithm: Try to find a max flow with integer values
by starting with the 0-flow and iteratively increasing
its value, using augmenting paths, always by an inte-
ger.

• Tolerance of an augmenting path is an integer once
the flow values and the capacities are integers.

• Maximum is indeed reached once there is no aug-
menting path.

Characterization Lemma. Feasible flow f is of maxi-
mum value iff there is NO f -augmenting path.

Proof. ⇒ Augmenting Lemma.
⇐ If f has no augmenting path, then t /∈ Sf and by

the Cut Lemma and the Conservation Lemma

cap(Sf , S̄f) =
∑

e∈[Sf ,S̄f ]

g(e)−
∑

e∈[S̄f ,Sf ]

f(e)

= val(f),

so f is a max flow by Weak Duality. 2
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Ford-Fulkerson Algorithm

Initialization f ≡ 0
WHILE there exists an augmenting path P

DO augment flow f along P
return f

Corollary. (Integrality Theorem) If all capacities of a
network are integers, then there is a maximum flow
assigning integral flow to each edge.
Furthermore, some maximum flow can be partitioned
into flows of unit value along path from source to sink.

Running times:

• Basic (careless) Ford-Fulkerson: might not even
terminate, flow value might not converge to maxi-
mum;
when capacities are integers, it terminates in time
O(m |f∗|), where f∗ is a maximum flow.
• Edmonds-Karp: chooses a shortest augmenting

path; runs in O(nm2)
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Example

The Max-flow Min-cut Theorem is true for real capaci-
ties as well,
BUT our algorithm might fail to find a maximum flow!!!

1

1
99 99

99 99

99 99

√
5−1
2

Example of Zwick (1995)

Remark. The max flow is 199. There is such an unfortunate

choice of a sequence of augmenting paths, by which the flow

value never grows above 2 +
√

5.
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Application 2: Menger’s Theorem

Recall:

κ(x, y) := min{|S| : S is an x, y-cut,} and

λ(x, y) := max{|P| : P is a set of p.i.d. x, y-paths}

Local-Vertex-Menger Theorem Let x, y ∈ V (G), such
that xy 6∈ E(G). Then

κ(x, y) = λ(x, y).

Proof. We apply the Integrality Theorem for the auxili-
ary network (D, x+, y−, c).

V (D) := {v−, v+ : v ∈ V (G)}
E(D) := {(u+v−) : uv ∈ E(G)}

∪{(v−v+) : v ∈ V (G)}

c(u+v−) =∞∗ and c(v−v+) = 1.

∗or rather a large enough integer, say |V (D)|.
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Application 3: Baranyai’s Theorem

χ′(Kn) = n− 1 is saying: E(Kn) can be decompo-
sed into pairwise disjoint perfect matchings.

k-uniform hypergraphs? E(K(k)
n ) =

(
[n]
k

)
Let k|n. S = {S1, . . . , Sn/k} is a “perfect matching in

K(k)
n if Si ∩ Sj = ∅ for i 6= j.

There are perfect matchings in K(k)
n . (How many?)

Is there a decomposition of
(

[n]
k

)
into perfect mat-

chings?

Not obvious already for k = 3 (Peltesohn, 1936)

k = 4 (Bermond)

Theorem (Baranyai, 1973) For every k|n, there is a
decomposition of

(
[n]
k

)
into perfect matchings.
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Proof of Baranyai’s Theorem

Induction on the size of the underlying set [n].
NOT the way you would think!!!

We imagine how the m = n
k pairwise disjoint k-sets

in each of the M =
(
n−1
k−1

)
=

(
n
k

)
/m “perfect mat-

chings” would develop as we add one by one the ele-
ments of [n].

A multiset A is an m-partition of the base set X if A
contains m pairwise disjoint sets whose union is X.

Remarks
An m-partition is a “perfect matching” in the making.
Pairwise disjoint⇒ only ∅ can occur more than once.

Stronger Statement For every l, 0 ≤ l ≤ n there
exists M m-partitions of [l], such that every set S oc-
curs in

(
n−l
k−|S|

)
m-partitions (∅ is counted with multi-

plicity).

Remark For l = n we obtain Baranyai’s Theorem sin-
ce
(

0
k−|S|

)
= 0 unless |S| = k, when its value is 1.
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Proof of Stronger Statement: Induction on l.

l = 0: Let all Ai consists of m copies of ∅.
l = 1: Let all Ai consists of m − 1 copies of ∅ and 1

copy of {1}.

Let A1, . . . ,AM be a family of m-partitions of [l] with
the required property.
We construct one for l + 1.

Define a network D:

V (D) = {s, t} ∪ {Ai : i = 1, . . . ,M} ∪ 2[l].

E(D) = {sAi : i ∈ [M ]} ∪ {AiS : S ∈ Ai}
∪ {St : S ∈ 2[l]}.

Edge Ai∅ has the same multiplicity as ∅ in Ai.

Capacities: c(sAi) = 1

c(AiS) any positive integer.

c(St) =
(
n−l−1
k−|S|−1

)
.


