Connectivity

A separating set (or vertex cut) of a graph G is a set
S C V(@) such that G — S is disconnected. For G #=
K, the connectivity of G is

= min{|S]| : S'is a vertex cut}.
By definition, =n — 1.

A graph G is called k-connected if v(G) > k£ + 1 and
there is no vertex cut of size k — 1. (i.e. k(G) > k)

Initial bounds: k(G) < v(G) — 1 (equality only for K3,)

k(G) < 6(G)
Examples:  «(Kpnm) = min{n,m}
K(Qq) =d

Extremal problem: What is the minimum number of
edges in a k-connected graph?

Theorem. For every n, the minimum number of edges
in a k-connected graph is [kn/2].
Proof: HW



A sufficient condition for Hamiltonicity via «__

Theorem. (Erdds-Chvatal, 1972) If x(G) > a(G),
then GG is Hamiltonian. (Unless G = K>5)

Proof. Letk = k(G) > 1. Let C = (vq,...vy) be the
longest cycle.

0(G) > k = length(C) > k+ 1
Let H be a component of G — C.

Let v;,,...v;, € V(C) be vertices with an edge to

V(H). Then:

k

-U ={v;;4+1,---, v, 41} is independent
- No edge between U and V(H).

=a(G)>k+ 1.0



Edge-connectivity

Def. A set ' C E(G) of edges of a multigraph G is a
disonnecting set if G — F' is disconnected. The edge-
connectivity of GG is

= min{ |F'| : F'is a disonnecting set}.
A graph G is called k-edge-connected if '(G) > k.

An edge cut of a multigraph G is an edge-set of the
form [S,S], with®) = S = V(G)and S =V (G) \ S.

.., wherefor S, T CV(G), [S,T] :={xy € E(G) :x € S,y € T}.

Obs. A minimal disconnecting set is an edge cut.
In particular,

= min{|[S,S]| : 0 CSCV(G)}.
and G is k-edge-connected iff there is no edge cut of
size < k — 1.

Theorem. (Whitney, 1932) If GG is a simple graph, then

k(G)<K'(G)<6(G).

Homework. Example of a graph G with x(G) = k,
k'(G) =1,6(G) =m,forany 0 < k£ <l < m.



Recall: Characterization of 2-connectivity

Decision problem: “Is G k-connected?” is in co-NP.
Is the problem also in NP? How about P?

Remark. k-connectivity is in P when k is a constant:
One checks for each subset of size < (k— 1) whether
its deletion results in a disconnected graph. (There
are polynomially many subsets to check, each check
is done by BFS or DFS in poly-time.)

But this does not work when k& = k(n) is a function
of n tending to co. (The number of subsets to check is
superpolynomial.)

An NP-co-NP-characterization of k-connectivity?

For K = 2: a simple sufficient condition, which pre-
vents that the removal of a single vertex disconnects
a graph G, is that for any pair u,v € V(G) there are
two disjoint ways to get from u to v.

Surprisingly, this condition is also necessary!
Theorem. (Whitney,1932) A graph G is 2-connected

for every u,v € V(G) there exist two internally dis-
joint u, v-paths in G.



Proof: Create two internally disjoint u, v-paths using
induction on dist(u,v) (the length of a shortest u, v-
path). O

Corollary 2-connectivity is in NPnco-NP.

A strengthening of Whitney’s Thm.
A graph G is 2-connected iff §(G) > 1 and every pair

of edges of GG lies on a common cycle.
Expansion Lemma. Let G’ be a supergraph of a k-connected
graph G obtained by adding one vertex to V' (G) with at least
k neighbors.
Then G’ is k-connected as well.

An obvious way to generalize Whitney’s sufficient con-
dition in order to ensure k-connectivity is if we requi-
re that between any two vertices there are £ disjoint
ways to get from one to the other. This also turns out
to be necessary, but the proof is much less obvious!

(Global-Vertex)-Menger Theorem. A graph G is k-
connected iff for every u,v € V(G) there exist k pair-
wise internally disjoint «, v-paths in G.

Corollary “k-connectivity” is in NPNco-NP for any func-
tion k = k(n)



Menger’'s Theorem

Given z,y € V(G),asetS C V(G) \ {z,y} is an
x, y-separating set if G — S has no z, y-path.

A set P of paths is called pairwise internally disjoint
(p.i.d.) if for any two path Py, P> € P, P; and P, have
no common internal vertices.

Define

= min{|S|: S is an z, y-separating set,} and
= max{|P| : P is aset of p.i.d. z, y-paths}

Local Vertex-Menger Theorem (Menger, 1927) Let
x,y € V(G), such that xy ¢ E(G). Then

k(z,y) = Xz,y).

Proof. Coming soon. (Using much more general ma-
chinery.)

Corollary (Global Vertex-Menger Theorem) A graph
G is k-connected iff for any two vertices z,y € V(G)
there exist a set of k£ p.i.d. =, y-paths.

Proof: Lemma. For every e € E(G), k(G —e) > k(G) — 1.
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Edge-Menger

Given z,y € V(G), aset F C E(G) is an x,y-
disconnecting set if G — F' has no x, y-path. Define

= min{|F| : F'is an x, y-disconnecting set, }
= max{|P| : P is asetof p.e.d.* =, y-paths}

* p.e.d. means pairwise edge-disjoint

Local Edge-Menger Theorem For all z,y € V(G),
K (z,y) = X (z,9).
Proof. HW
Corollary (Global Edge-Menger Theorem) Multigraph
GG is k-edge-connected iif there is a set of k£ p.e.d.xz, y-

paths for any two vertices x and y.

Corollary “k-edge-connectivity” is in NPNco-NP for
any function £k = k(n)



Network flows

Network (D, s, t, c), where

D = (V, E) is a directed graph,
s € V is the source, t € V is the sink,
c: E — IR>q is the capacity function.

A function f : £ — IR is called a flow. Define

ffw):= > f(e)
@)=Y f(e), where e = (e, eT).

€+:’U

Flow f is feasible if

() f+(v) = f~(v) for every v # s, t (conservation
constraints), and

(1) 0 < f(e) < c(e) for every e € E (capacity cons-
traints).

value of flow, val(f) = f—(t) — £ (1).

WANT:
A maximum flow: feasible flow with maximum value
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Example: finding a max flow

Starting with the O-flow

A way to prove maximality of a flow —

—— capacity of source/sink cuts



Source/sink cuts

[S,S5] :={(u,v) €e E(D) :ue S,ve S}tisa
source/sink cutifs € Sandt € S

capacity of cut: cap(S, S) = > ec[S.5] c(e).

Weak Duality Lemma. If f is a feasible flow and [S, S]
IS a source/sink cut, then

val(f) < cap(S,S).

Proof. cap(S,S) = Y  c(e)
ec[S,S]

> > f(e)

e€[S,S]
> >, fle—- > f(e
GE[S,g] €€[§,S]
= wal(f).O
We used the capacity constraints and the feeling that

the last equality must be true by the conservation cons-
traints ... Proof (HW?)



The value of a feasible flow

Conservation Lemma. If f is any feasible flow, s €

Q,t ¢ Q, then
Yoo fle)— > f(e) = val(f).
ec[Q,Q] e€[Q,Q]

Proof. By induction on |Q]. If |Q]
and by definition £—(¢) — f1(¢t)

1 then Q = {t}
val(f).

Let [Q| >2andletz € Q, = # t.
Define R = Q U {z}. Since |R| < |Q|, by induction

val(f) = Z f(e) — Z f(e)

e€[R,R] e€[R,R]
= Y fle- Y fle+ Y flau)
e€[Q,Q] e€[Q,Q] ueqQ)
— > fluz)+ ) flzv)— > f(vz)
ucq) vER vER
= > flee- > fle+ @ - ()
e€[Q,Q] e€[Q,Q]

Remark. val(f) = f1(s) — f=(s).
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Improving a feasible flow: f-augmenting paths

G': underlying undirected multigraph of network D

s, t-path s=wvg,eq,v1,€e2...Vp_1,€L, V=t ING
IS an f-augmenting path, if for every 2

o f(e;) < c(e;) if e; is a “forward edge”

e f(e;) > 0if e; is a “backward edge”

Tolerance of the path P is min{e(e) : e € E(P)},
where e(e) = c(e) — f(e) if e is forward, and
e(e) = f(e) if e is backward.

Augmenting Lemma. Let f be feasible and P be an
f-augmenting path with tolerance z. Define

f'(e) := f(e) + z if e is forward,

f'(e) := f(e) — zif e is backward.

f(e) := f(e) ife ¢ E(P),

Then £’ is feasible with val(f") = val(f) + z.
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Max Flow-Min Cut Theorem

Cut Lemma. For a feasible flow f define the subset
Sy :={v eV : 3 f-augmenting path* from s to v}.
If t € S, then

cap(Sp,Sp) =Y. fle)— > f(e).

6€[Sf,§f] eé[gf,Sf]

Max Flow-Min Cut Theorem (Ford-Fulkerson, 1956)

maxval(f) min cap(S, S).

Proof.

: Weak Duality.

. Let g be a max flow. Then g has no augmenting
path, so t ¢ S, and then by the Cut Lemma and the
Conservation Lemma

cap(Sg,gg) — Z g(e) — Z g(e)
e€[Sy,5¢] e€[Sg,S¢]
= wal(g).O
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Application 1: Edge-Menger Theorem

Local-Edge-Menger Theorem For all z,y € V(G),

R (z,y) = N (z,y).
Proof. | <| Build network (D, z, vy, c) where
V(D) .=V (G)
E(D) :={(u,v),(v,u) : uv € E(G)} and
c(e) ;== 1foralle € E(D).
e Forany S C Vwithx € Sandy ¢ S, we have
[S, S]| = cap(S, S). Hence
k'(z,y) = mincap(S, S) = maxval(f).
e each set of p.e.d. path determines a feasible flow of
value M (z,y) < maxwval(f).

A unit flow is a feasible flow that has value 1 along an
s, t-path and O everywhere else.

Unit Flows Lemma. If f is a feasible flow with inte-
ger values, then there exists m := val(f) unit flows
g1,---gm, Suchthat f = g1 + - + gm.

e We know that maxwval(f) = &/(x,y) is an integer.
But, is there a flow with integer values that realizes
this??? (and hence is the sum of x’'(x, y) unit flows?)
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Characterization of maximum flows

Algorithm: Try to find a max flow with integer values
by starting with the O-flow and iteratively increasing
its value, using augmenting paths, always by an inte-
ger.

e Tolerance of an augmenting path is an integer once
the flow values and the capacities are integers.

e Maximum is indeed reached once there is no aug-
menting path.

Characterization Lemma. Feasible flow f is of maxi-
mum value iff there is NO f-augmenting path.

Proof. [= 1] Augmenting Lemma.
<] If f has no augmenting path, then ¢ ¢ S and by
the Cut Lemma and the Conservation Lemma

cap(Sy,Sp) = > gle)— > f(e)
eE[Sf,gf] GE[S'f,Sf]
= wal(f),

so f is a max flow by Weak Duality. O
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Ford-Fulkerson Algorithm

Initialization f =0
WHILE there exists an augmenting path P
DO augment flow f along P

return f

Corollary. (Integrality Theorem) If all capacities of a
network are integers, then there is a maximum flow
assigning integral flow to each edge.

Furthermore, some maximum flow can be partitioned
into flows of unit value along path from source to sink.

Running times:

e Basic (careless) Ford-Fulkerson: might not even
terminate, flow value might not converge to maxi-
mum;
when capacities are integers, it terminates in time
O(m|f*|), where f*is a maximum flow.

e Edmonds-Karp: chooses a shortest augmenting
path; runs in O(nm?2)
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Example

The Max-flow Min-cut Theorem is true for real capaci-

ties as well,
BUT our algorithm might fail to find a maximum flow!!!

Example of Zwick (1995)

Remark. The max flow is 199. There is such an unfortunate
choice of a sequence of augmenting paths, by which the flow

value never grows above 2 + /5.
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Application 2: Menger's Theorem

Recall:

= min{|S|: Sisan z,y-cut,} and
= max{|P| : P is a set of p.i.d. x, y-paths}

Local-Vertex-Menger Theorem Let z, y € V(G), such
that zy € E(G). Then

k(z,y) = Mz,y).

Proof. We apply the Integrality Theorem for the auxili-
ary network (D, z1,y~, ¢).
V(D) = {v 0T 1v e V(G)}
E(D) = {(uTv7) 1 uv € E(G)}
U{(v_fv+) v e V(G)}
c(utv™) = co*and c(v-vt) = 1.

*or rather a large enough integer, say |V (D)]|.
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Application 3: Baranyai’s Theorem

X' (Kpn) = n — 1is saying: E(Ky) can be decompo-
sed into pairwise disjoint perfect matchings.

k-uniform hypergraphs? E(/Cg“)) — (D};&])

Let kln. S = {51,...,5,/} is a “perfect matching in
IC%’“) if S; NS; = 0 fori# j.

There are perfect matchings in IC%’“). (How many?)

Is there a decomposition of ([’Z]> into perfect mat-
chings?

Not obvious already for k = 3 (Peltesohn, 1936)
k = 4 (Bermond)

Theorem (Baranyai, 1973) For every k|n, there is a
decomposition of ([Z]) into perfect matchings.
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Proof of Baranyai's Theorem

Induction on the size of the underlying set [n].
NOT the way you would think!!!

We imagine how the m = 7 pairwise disjoint k-sets
in each of the M = (Z‘%) = (Z’) /m “perfect mat-

chings” would develop as we add one by one the ele-
ments of [n].

A multiset A is an m-partition of the base set X if A
contains m pairwise disjoint sets whose union is X.

Remarks
An m-partition is a “perfect matching” in the making.
Pairwise disjoint = only () can occur more than once.

Stronger Statement For every [, 0 < [ < n there
exists M m-partitions of [I], such that every set S oc-

n_

curs in (k_|5|) m-partitions (0 is counted with multi-
plicity).

Remark For [ = n we obtain Baranyai's Theorem sin-

ce (k_0|5|) = 0 unless |S| = k, when its value is 1.
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Proof of Stronger Statement: Induction on .

| = O: Let all A; consists of m copies of (.

| = 1: Let all A; consists of m — 1 copies of ) and 1
copy of {1}.

Let A1,..., Ay be afamily of m-partitions of [I] with
the required property.
We construct one for [ 4 1.

Define a network D:

V(D) ={s,t}U{A;:i=1,...,M}yu2ll

E(D) ={sA;:ie€ [M]}U{A;S:S e A}
U{St: S e 2l

Edge A;0 has the same multiplicity as 0 in A,;.

Capacities: c¢(sA4;) = 1
c(A;S) any positive integer.
_ ( n—=l-1
e(58) = ({511



