Connectivity_

A separating set (or vertex cut) of a graph G is a set $S \subseteq V(G)$ such that G - S is disconnected. For $G \neq K_n$, the connectivity of G is

 $\kappa(G) := \min\{|S| : S \text{ is a vertex cut}\}.$

By definition, $\kappa(K_n) := n - 1$.

A graph *G* is called *k*-connected if $v(G) \ge k + 1$ and there is no vertex cut of size k - 1. (i.e. $\kappa(G) \ge k$)

Initial bounds:
$$\kappa(G) \le v(G) - 1$$
 (equality only for K_n)
 $\kappa(G) \le \delta(G)$
Examples: $\kappa(K_{n,m}) = \min\{n, m\}$
 $\kappa(Q_d) = d$

Extremal problem: What is the minimum number of edges in a *k*-connected graph?

Theorem. For every *n*, the minimum number of edges in a *k*-connected graph is $\lceil kn/2 \rceil$. *Proof:* HW

A sufficient condition for Hamiltonicity via κ_{-}

Theorem. (Erdős-Chvátal, 1972) If $\kappa(G) \geq \alpha(G)$, then G is Hamiltonian. (Unless $G = K_2$)

Proof. Let $k = \kappa(G) > 1$. Let $C = (v_1, \ldots v_\ell)$ be the longest cycle.

 $\delta(G) \ge k \Rightarrow length(C) \ge k+1$

Let *H* be a component of G - C.

Let $v_{i_1}, \ldots v_{i_k} \in V(C)$ be vertices with an edge to V(H). Then:

- $U = \{v_{i_1+1}, \dots, v_{i_k+1}\}$ is independent - No edge between U and V(H).

 $\Rightarrow \alpha(G) \ge k + 1. \square$

Edge-connectivity

Def. A set $F \subseteq E(G)$ of edges of a multigraph G is a disonnecting set if G - F is disconnected. The edge-connectivity of G is

 $\kappa'(G) := \min\{ |F| : F \text{ is a disonnecting set} \}.$

A graph G is called k-edge-connected if $\kappa'(G) \ge k$.

An edge cut of a multigraph G is an edge-set of the form $[S, \overline{S}]$, with $\emptyset \neq S \neq V(G)$ and $\overline{S} = V(G) \setminus S$, where for $S, T \subseteq V(G)$, $[S, T] := \{xy \in E(G) : x \in S, y \in T\}$.

Obs. A minimal disconnecting set is an edge cut. In particular,

 $\kappa'(G) = \min\{|[S,\overline{S}]| : \emptyset \subset S \subset V(G)\}.$ and *G* is *k*-edge-connected iff there is no edge cut of size $\leq k - 1$.

Theorem. (Whitney, 1932) If G is a simple graph, then

 $\kappa(G) \leq \kappa'(G) \leq \delta(G).$

Homework. Example of a graph G with $\kappa(G) = k$, $\kappa'(G) = l$, $\delta(G) = m$, for any $0 < k \le l \le m$.

Recall: Characterization of 2-connectivity_

Decision problem: "Is G k-connected?" is in co-NP. Is the problem also in NP? How about P?

Remark. *k*-connectivity is in *P* when *k* is a constant: One checks for each subset of size $\leq (k-1)$ whether its deletion results in a disconnected graph. (There are polynomially many subsets to check, each check is done by BFS or DFS in poly-time.)

But this does **not** work when k = k(n) is a function of *n* tending to ∞ . (The number of subsets to check is superpolynomial.)

An NP-co-NP-characterization of *k*-connectivity?

For k = 2: a simple sufficient condition, which prevents that the removal of a single vertex disconnects a graph G, is that for any pair $u, v \in V(G)$ there are **two disjoint ways** to get from u to v.

Surprisingly, this condition is also necessary! **Theorem.** (Whitney,1932) A graph *G* is 2-connected iff for every $u, v \in V(G)$ there exist two internally disjoint u, v-paths in *G*. *Proof:* Create two internally disjoint u, v-paths using induction on dist(u, v) (the length of a shortest u, v-path).

Corollary 2-connectivity is in NP∩co-NP.

A strengthening of Whitney's Thm.

A graph *G* is 2-connected iff $\delta(G) \ge 1$ and every pair of edges of *G* lies on a common cycle.

Expansion Lemma. Let G' be a supergraph of a k-connected graph G obtained by adding one vertex to V(G) with at least k neighbors.

Then G' is k-connected as well.

An obvious way to generalize Whitney's sufficient condition in order to ensure k-connectivity is if we require that between any two vertices there are k disjoint ways to get from one to the other. This also turns out to be necessary, but the proof is much less obvious!

(Global-Vertex)-Menger Theorem. A graph G is kconnected iff for every $u, v \in V(G)$ there exist k pairwise internally disjoint u, v-paths in G.

Corollary "k-connectivity" is in NP \cap co-NP for any function k = k(n)

Menger's Theorem

Given $x, y \in V(G)$, a set $S \subseteq V(G) \setminus \{x, y\}$ is an x, y-separating set if G - S has no x, y-path.

A set \mathcal{P} of paths is called pairwise internally disjoint (p.i.d.) if for any two path $P_1, P_2 \in \mathcal{P}, P_1$ and P_2 have no common internal vertices.

Define

 $\kappa(x, y) := \min\{|S| : S \text{ is an } x, y \text{-separating set,} \}$ and $\lambda(x, y) := \max\{|\mathcal{P}| : \mathcal{P} \text{ is a set of p.i.d. } x, y \text{-paths}\}$

Local Vertex-Menger Theorem (Menger, 1927) Let $x, y \in V(G)$, such that $xy \notin E(G)$. Then

 $\kappa(x,y) = \lambda(x,y).$

Proof. Coming soon. (Using much more general machinery.)

Corollary (Global Vertex-Menger Theorem) A graph G is *k*-connected iff for any two vertices $x, y \in V(G)$ there exist a set of *k* p.i.d. *x*, *y*-paths.

Proof: Lemma. For every $e \in E(G)$, $\kappa(G - e) \geq \kappa(G) - 1$.

Edge-Menger

Given $x, y \in V(G)$, a set $F \subseteq E(G)$ is an x, ydisconnecting set if G - F has no x, y-path. Define

 $\kappa'(x,y) := \min\{|F| : F \text{ is an } x, y \text{-disconnecting set,}\}$ $\lambda'(x,y) := \max\{|\mathcal{P}| : \mathcal{P} \text{ is a set of p.e.d.}^* x, y \text{-paths}\}$

* p.e.d. means pairwise edge-disjoint

Local Edge-Menger Theorem For all $x, y \in V(G)$,

 $\kappa'(x,y) = \lambda'(x,y).$

Proof. HW

Corollary (Global Edge-Menger Theorem) Multigraph G is *k*-edge-connected iff there is a set of *k* p.e.d.*x*, *y*-paths for any two vertices x and y.

Corollary "*k*-edge-connectivity" is in NP \cap co-NP for any function k = k(n)

Network flows

Network (D, s, t, c), where D = (V, E) is a directed multigraph, $s \in V$ is the source, $t \in V$ is the sink, $c : E \to I\!R_{\geq 0}$ is the capacity function.

A function $f: E \to I\!\!R$ is called a flow. Define

$$f^+(v) := \sum_{e^- = v} f(e)$$

$$f^-(v) := \sum_{e^+ = v}^{e^- = v} f(e), \text{ where } e = (e^-, e^+).$$

Flow f is feasible if

- (i) $f^+(v) = f^-(v)$ for every $v \neq s, t$ (conservation constraints), and
- (*ii*) $0 \le f(e) \le c(e)$ for every $e \in E$ (capacity constraints).

value of flow, $val(f) := f^{-}(t) - f^{+}(t)$.

WANT:

A maximum flow: feasible flow with maximum value

Example: finding a max flow_

Starting with the 0-flow

A way to prove maximality of a flow \longrightarrow

 \longrightarrow capacity of source/sink cuts

Source/sink cuts

 $[S, \overline{S}] := \{(u, v) \in E(D) : u \in S, v \in \overline{S}\}$ is a source/sink cut if $s \in S$ and $t \in \overline{S}$

capacity of cut: $cap(S, \overline{S}) := \sum_{e \in [S, \overline{S}]} c(e).$

Weak Duality Lemma. If f is a feasible flow and $[S, \overline{S}]$ is a source/sink cut, then

 $val(f) \leq cap(S, \overline{S}).$

Proof.
$$cap(S, \overline{S}) = \sum_{e \in [S, \overline{S}]} c(e)$$

$$\geq \sum_{e \in [S, \overline{S}]} f(e)$$

$$\geq \sum_{e \in [S, \overline{S}]} f(e) - \sum_{e \in [\overline{S}, S]} f(e)$$

$$= val(f).\Box$$

We used the capacity constraints and the feeling that the last equality must be true by the conservation constraints ... Proof (HW?) The value of a feasible flow.

Conservation Lemma. If f is any feasible flow, $s \in Q$, $t \notin Q$, then

$$\sum_{e \in [Q,\bar{Q}]} f(e) - \sum_{e \in [\bar{Q},Q]} f(e) = val(f).$$

Proof. By induction on $|\bar{Q}|$. If $|\bar{Q}| = 1$ then $\bar{Q} = \{t\}$ and by definition $f^{-}(t) - f^{+}(t) = val(f)$.

Let
$$|\bar{Q}| \ge 2$$
 and let $x \in \bar{Q}, x \ne t$.
Define $R = Q \cup \{x\}$. Since $|\bar{R}| < |\bar{Q}|$, by induction
 $val(f) = \sum_{e \in [R,\bar{R}]} f(e) - \sum_{e \in [\bar{R},R]} f(e)$
 $= \sum_{e \in [Q,\bar{Q}]} f(e) - \sum_{e \in [\bar{Q},Q]} f(e) + \sum_{u \in Q} f(xu)$
 $- \sum_{u \in Q} f(ux) + \sum_{v \in \bar{R}} f(xv) - \sum_{v \in \bar{R}} f(vx)$
 $= \sum_{e \in [Q,\bar{Q}]} f(e) - \sum_{e \in [\bar{Q},Q]} f(e) + f^+(x) - f^-(x)$

Remark. $val(f) = f^+(s) - f^-(s)$.

Improving a feasible flow: *f*-augmenting paths

G: underlying undirected multigraph of network D

s, t-path $s = v_0, e_1, v_1, e_2 \dots v_{k-1}, e_k, v_k = t$ in G is an *f*-augmenting path, if for every *i*

- $f(e_i) < c(e_i)$ if e_i is a "forward edge"
- $f(e_i) > 0$ if e_i is a "backward edge"

Tolerance of the path *P* is $\min\{\epsilon(e) : e \in E(P)\}$, where $\epsilon(e) = c(e) - f(e)$ if *e* is forward, and $\epsilon(e) = f(e)$ if *e* is backward.

Augmenting Lemma. Let f be feasible and P be an f-augmenting path with tolerance z. Define f'(e) := f(e) + z if e is forward, f'(e) := f(e) - z if e is backward. f'(e) := f(e) if $e \notin E(P)$, Then f' is feasible with val(f') = val(f) + z. **Cut Lemma.** For a feasible flow f define the subset $S_f := \{v \in V : \exists f$ -augmenting path* from s to $v\}$. If $t \notin S$, then

$$cap(S_f, \bar{S}_f) = \sum_{e \in [S_f, \bar{S}_f]} f(e) - \sum_{e \in [\bar{S}_f, S_f]} f(e).$$

Max Flow-Min Cut Theorem (Ford-Fulkerson, 1956)

 $\max val(f) = \min cap(S, \overline{S}).$

Proof.

 \leq : Weak Duality.

 \geq : Let g be a max flow. Then g has no augmenting path, so $t \notin S_g$, and then by the Cut Lemma and the Conservation Lemma

$$cap(S_g, \bar{S}_g) = \sum_{e \in [S_g, \bar{S}_g]} g(e) - \sum_{e \in [\bar{S}_g, S_g]} g(e)$$
$$= val(g).\square$$

Application 1: Edge-Menger Theorem_

Local-Edge-Menger Theorem For all $x, y \in V(G)$,

 $\kappa'(x,y) = \lambda'(x,y).$

Proof. \leq Build network (D, x, y, c) where V(D) := V(G) $E(D) := \{(u, v), (v, u) : uv \in E(G)\}$ and c(e) := 1 for all $e \in E(D)$.

• For any $S \subset V$ with $x \in S$ and $y \notin S$, we have $|[S, \overline{S}]| = cap(S, \overline{S})$. Hence

 $\kappa'(x,y) = \min cap(S,\overline{S}) = \max val(f).$

• each set of p.e.d. path determines a feasible flow of value $\lambda'(x, y) \leq \max val(f)$.

A *unit flow* is a feasible flow that has value 1 along an s, t-path and 0 everywhere else.

Unit Flows Lemma. If f is a feasible flow with integer values, then there exists m := val(f) unit flows g_1, \ldots, g_m , such that $f = g_1 + \cdots + g_m$.

• We know that $\max val(f) = \kappa'(x, y)$ is an integer. But, is there a flow with integer values that realizes this??? (and hence is the sum of $\kappa'(x, y)$ unit flows?)

Characterization of maximum flows_

Algorithm: Try to find a max flow with integer values by starting with the 0-flow and iteratively increasing its value, using augmenting paths, always by an integer.

• Tolerance of an augmenting path is an integer once the flow values and the capacities are integers.

• Maximum is indeed reached once there is no augmenting path.

Characterization Lemma. Feasible flow f is of maximum value iff there is NO f-augmenting path.

Proof. \implies Augmenting Lemma.

 \Subset If f has no augmenting path, then $t \notin S_f$ and by the Cut Lemma and the Conservation Lemma

$$cap(S_f, \bar{S}_f) = \sum_{e \in [S_f, \bar{S}_f]} g(e) - \sum_{e \in [\bar{S}_f, S_f]} f(e)$$

= $val(f)$,

so f is a max flow by Weak Duality.

Ford-Fulkerson Algorithm_

Initialization $f \equiv 0$

WHILE there exists an augmenting path P

```
DO augment flow f along P
```

return f

Corollary. (Integrality Theorem) If all capacities of a network are integers, then there is a maximum flow assigning integral flow to each edge.

Furthermore, some maximum flow can be partitioned into flows of unit value along path from source to sink.

Running times:

 Basic (careless) Ford-Fulkerson: might not even terminate, flow value might not converge to maximum;

when capacities are integers, it terminates in time $O(m |f^*|)$, where f^* is a maximum flow.

• Edmonds-Karp: chooses a *shortest* augmenting path; runs in $O(nm^2)$

Example

The Max-flow Min-cut Theorem is true for real capacities as well,

BUT our algorithm might fail to find a maximum flow!!!

Example of Zwick (1995)

Remark. The max flow is 199. There is such an unfortunate choice of a sequence of augmenting paths, by which the flow value never grows above $2 + \sqrt{5}$.

Application 2: Menger's Theorem

Recall:

$$\kappa(x, y) := \min\{|S| : S \text{ is an } x, y \text{-cut}, \}$$
 and
 $\lambda(x, y) := \max\{|\mathcal{P}| : \mathcal{P} \text{ is a set of p.i.d. } x, y \text{-paths}\}$

Local-Vertex-Menger Theorem Let $x, y \in V(G)$, such that $xy \notin E(G)$. Then

$$\kappa(x,y) = \lambda(x,y).$$

Proof. We apply the Integrality Theorem for the auxiliary network (D, x^+, y^-, c) .

$$V(D) := \{v^{-}, v^{+} : v \in V(G)\}$$
$$E(D) := \{(u^{+}v^{-}) : uv \in E(G)\}$$
$$\cup\{(v^{-}v^{+}) : v \in V(G)\}$$

 $c(u^+v^-) = \infty^* \text{ and } c(v^-v^+) = 1.$

*or rather a large enough integer, say |V(D)|.

Application 3: Baranyai's Theorem_

 $\chi'(K_n) = n - 1$ is saying: $E(K_n)$ can be decomposed into pairwise disjoint perfect matchings.

k-uniform hypergraphs? $E(\mathcal{K}_n^{(k)}) = {[n] \choose k}$

Let k|n. $S = \{S_1, \dots, S_{n/k}\}$ is a "perfect matching in $\mathcal{K}_n^{(k)}$ if $S_i \cap S_j = \emptyset$ for $i \neq j$.

There are perfect matchings in $\mathcal{K}_n^{(k)}$. (How many?) Is there a decomposition of $\binom{[n]}{k}$ into perfect matchings?

Not obvious already for k = 3 (Peltesohn, 1936) k = 4 (Bermond)

Theorem (Baranyai, 1973) For every k|n, there is a decomposition of $\binom{[n]}{k}$ into perfect matchings.

Proof of Baranyai's Theorem.

Induction on the size of the underlying set [n]. **NOT** the way you would think!!!

We imagine how the $m = \frac{n}{k}$ pairwise disjoint *k*-sets in each of the $M = \binom{n-1}{k-1} = \binom{n}{k}/m$ "perfect matchings" would develop as we add one by one the elements of [n].

A **multi**set \mathcal{A} is an *m*-partition of the base set X if \mathcal{A} contains *m* pairwise disjoint sets whose union is *X*.

Remarks

An *m*-partition is a "perfect matching" in the making. Pairwise disjoint \Rightarrow only \emptyset can occur more than once.

Stronger Statement For every l, $0 \le l \le n$ there exists M m-partitions of [l], such that every set S occurs in $\binom{n-l}{k-|S|}m$ -partitions (\emptyset is counted with multiplicity).

Remark For l = n we obtain Baranyai's Theorem since $\begin{pmatrix} 0 \\ k-|S| \end{pmatrix} = 0$ unless |S| = k, when its value is 1.

Proof of Stronger Statement: Induction on *l*.

l = 0: Let all A_i consists of m copies of \emptyset . l = 1: Let all A_i consists of m - 1 copies of \emptyset and 1 copy of $\{1\}$.

Let A_1, \ldots, A_M be a family of *m*-partitions of [l] with the required property. We construct one for l + 1.

Define a network D:

$$V(D) = \{s,t\} \cup \{\mathcal{A}_i : i = 1, \dots, M\} \cup 2^{[l]}.$$
$$E(D) = \{s\mathcal{A}_i : i \in [M]\} \cup \{\mathcal{A}_i S : S \in \mathcal{A}_i\}$$
$$\cup \{St : S \in 2^{[l]}\}.$$

Edge $A_i \emptyset$ has the same multiplicity as \emptyset in A_i .

Capacities: $c(sA_i) = 1$ $c(A_iS)$ any positive integer. $c(St) = \binom{n-l-1}{k-|S|-1}.$