Polynomial time algorithms

Examples Sorting, Kruskal, Dijkstra

Common feature: number of steps bounded by a po-

lynomial of the input size.

Finishing in polynomial time is the theoretical choice

for an algorithm being “fast”.

e Ignores running time for small input size, concen-

trates on performance on large input; not neces-
sarily fast in practice

e But (unpractical) theoretical advance often inspi-
res improvements in practice

e Can take advantage of improving technology mo-
re

e Constant factor: hides dependence on concrete
system/implementation

e Less sensitive to definition of operation in runtime
calculations

Comparing O(n199) and O(2") algorithms

The class P

We restrict to dealing with decision problems (pro-
blems with a YES or NO answer to every input)

The class P consists of decision problems that can be
solved by a polynomial time algorithm

Optimization problems can also be formulated as de-
cision problems

Arthur and Merlin — a glimpse of complexity_

A: Show me a pairing, so my 150 knights can marry
these 150 ladies!

M: Not possible!

A: Why?

M: Here are these 93 ladies and 58 knights, none of
them are willing to marry each other.

A: Alright, alright ...

A: Seat my 150 knights around the round table, so that
neighbors don't fight!

M: Not possible!

A: Why?

M: It will take me forever to explain you.

A: 1 don't believe you! Into the dungeon!

The class NP

A YES/NO-problem is in the class NP, if for any YES-
input it could be verified fast (in time polynomial in the
input size), that the answer to the input is indeed YES.

In other words: there is a "certificate”, which a compu-
ter (i.e., Arthur, I.e., a polynomial time algorithm) can
verify fast (the certificate can be provided by an all-
powerful oracle (i.e., Merlin))

NP: “nondeterministic polynomial time”

Examples:

- “Does this bipartite graph have a perfect matching?”
(provide perfect matching)

- “Does this bipartite graph have no perfect matching?”
(provide a subset S of one of the sides that has less
neighbors than elements; such a certificate exists by
Hall's Theorem)

- “Does this graph have a Hamilton cycle?” (provide
Hamilton cycle)

Merlin’s Pech: “Does this graph have no Hamilton cy-
cle?” is not (known to be) in NP

P vs NP

Recall: a YES/NO-problem is in the class P, if there is
polynomial time algorithm that decides whether the
answer is YES or NO.

Of course: P C NP
(the running of the algorithm is itself a certificate (i.e.,
no need for Merlin))

Conjecture. P = NP (1,000,000 US dollars)

Potential examples in N P\ P: Hamiltonicity, 3-colorability,
independence number, . ..

NP-hard problem: every problem in NP can be redu-
ced to it in polynomial time (consequently, giving a po-
lynomial time algorithm for it would result in a polyno-
mial time algorithm for all problems in NP, and hence
P=NP)

NP-complete problem: NP-hard and contained in NP

Many problems are NP-complete: Hamiltonicity, 3-colorability
4-colorability, planar 3-colorability
(but 2-colorability and planar 4-colorability are in P)

5

Characterizations

A YES/NO-problem is in the class co-NP: The answer
NO can be verified efficiently

Property has a “good” characterization — correspon-
ding decision problem is both in NP and co-NP

Examples:

- Does this bipartite graph have a perfect matching?

- "Is this graph 2-colorable?” (NP-certificate: 2-coloring;
co-NP-certificate: odd cycle)

- "Is this graph Eulerian?” (NP-certificate: ordered list
of the edges for an Eulerian circuit; co-NP-certificate:
vertex with odd degree (exists because of Euler’'s Theo-
rem))

Of course: P C NP N co-NP
Often: Problems in NP N co-NP are also in P

However: People think P = NP n co-NP

We don’t know: status of problem ”Is there a factor
of n less than £?” (until 2002 even the status of the
problem “Is n a prime?” was also not known)

Perfect matchings in general graphs

NP-co-NP-characterization for bipartite graphs:

Corollary (of Hall's Marriage Theorem) There is a per-
fect matching in a bipartite graph G = (X U Y, FE)
| X| = 1|Y|and |N(S)| > |S| forevery S C X.

Towards an NP-co-NP-characterization for general gra-
phs. Obstructions for p.m.: no graph on odd vertices

has p.m. The disjoint union of two odd graphs has

even number of vertices, but no p.m. The disjoint uni-

on of three odd graphs with each connected to a sin-

gle vertex is connected, has even number of vertices,

but no p.m. Etc ...

An odd component is a connected component with an
odd number of vertices. Denote by o(H) the number
of odd components of a graph H.

Theorem. (Tutte, 1947) A graph G has a perfect mat-
ching iff o(G — S) < | S| for every subset S C V(G).

Corollary. Decision problem “Does this graph have
p.m.?” is in NPNco-NP.

Matchings in general graphs

Proof.
= Easy (think over).

< (Lovasz, 1975) Consider a counterexample G (G
satisfies Tutte’s Condition, but has no perfect matching)
with the maximum number of edges.

Claim. G + xy has a perfect matching for any zy ¢
E(G).

Define U := {v € V(G) : dg(v) =n(G) — 1}
Case 1. G — U consists of disjoint cliques.

Straightforward to construct a perfect matching of G
(using Tutte’s condition for S =). Contradiction.
Case 2. G — U is not the disjoint union of cliques.

Derive the existence of four vertices x, vy, z, w such
that yx,yz € £ and zz,yw & E.

ldea: Obtain contradiction by constructing a perfect
matching M of G using perfect matchings M; and
M- of G + xz and G + yw, respectively, and the ed-
ges yx and yz.

How? My U M5 is a subgraph of G + {zz,yw} that
spans all vertices and all its components are even
cycles or single edges. Choose edges of M these
component-wise.

If a component C

e does not contain zz: use edges of M7 to saturate
V(CO).

e does not contain yw: use edges of M- to saturate
V(C).

e contains both xz and yw: Then C'is an even cycle
and the path C' — y is of even length. = and z
are neighbors on C' — y and not endpoints, so the
removal of one of them cuts C — y into two paths
of odd length. On each of these odd paths take
the uniqgue maximum matching and saturate the
remaining two vertices of C' (that were removed)
by the edge of G connecting them. (yx or yz)

Perfect matchings in regular graphs

Corollary of Hall’'s Theorem: Every k-regular bipartite
graph, k > 1, has a perfect matching

2-regular non-bipartite graph might have no perfect
matching. (odd cyces)

BUT! Corollary of Tutte’s Theorem:

Theorem. (Petersen, 1891) Every 3-regular graph with
no cut-edge has a perfect matching.

Proof. Check Tutte’s condition. Let S C V(G).
Double-count the number of edges between an S and
the odd components of G — S.

Observe that between any odd component and S the-
re are at least three edges.

Failed tries for characterizing Hamiltonicity

Recall: a sufficient condition from DMI.

Dirac’s Theorem. If G = (V, E) is a simple graph on
n > 3 vertices and 6(G) > 5, then G is Hamiltonian.

The condition is best possible, but not necessary (Ch,)
A slightly weaker sufficient condition:

Ore’s Condition. Let GG be n vertex graph such that
for every uv € E(G), we have d(u) + d(v) > n, then
G i1s Hamiltonian.

Still not necessary...

A necessary condition? What is true for a single Ha-
milton cycle?

Proposition. If G is Hamiltonian, then for every S C
V,c(G—=S) < |S| (where c(H) is the number of com-
ponents of graph H).

This is not sufficient. (Petersen graph)

10

Trying to strengthen the sufficient condition. A graph
G is t-tough if |S| > te(G — S) for every cut-set
S C V(G). The toughness of G is the maximum ¢
such that GG is t-tough.

The toughness of the Petersen graph is 4/3.

Toughness Conjecture (Chvatal, 1973) There is a
value ¢ such that every graph of toughness at least ¢
is Hamiltonian.

Bauer-Broersma-Veldman (2000) constructed a fami-
ly of non-Hamiltonian graphs with toughness approa-
ching 9/4. So the conjecture is not true for t < 3.

And even if we were able to prove the Toughness Con-
jecture for some t, it would not give a characterization
of Hamiltonicity, only sandwich it between two proper-
ties that are a “constant factors away from each other”.

Maximum matching problem

Optimization version of matching problem: “What is
the size of the maximum matching?”

Decision problem: “Is the maximum matching in this
graph is at least £?”

Perfect matching problem is special case: k =

NI

Is the maximum matching problem also in NPnco-NP
for every (function) k = k(n)?

Our NP-co-NP-characterization theorems turn out to

have the appropriate generalizations. — Min-Max Theo-
rems.

11

Certificate for bipartite graphs — Take 1

How to convince Arthur that in a bipartite graph G =
(X UY, E) there is no matching of size larger than k?

Find asubset S C X, suchthatk = | X| — |S| + |[N(9)]

1. Correctness of the certificate:
For any matching M and subset S C X, at least

S| — |[N(S)| vertices of S are not saturated by M
(since vertices of S can only be matched into distinct
vertices of N(.9)).
2. Existence of optimal certificate:
By a min-max generalization of Hall's Theorem:
Hall’s Theorem (Min-max version) For every bipar-
tite graph G = (X UY, F),

o/ (G) = min{|X| —|S] + [N(S)| : § € X},
where o/ (G) = size of largest matching.
Proof. HW
This implies that there exists a subset S C X, such
that | X| — |S| 4+ |[N(S)| = /' (G).

12

Certificate for bipartite graphs — Take 2

Recall: C C V(@) is a vertex cover if for every edge
e c E(G),enC # 0.
B(G) = min{|C| : Cis a vertex cover}

To convince Arthur that in an arbitrary(!) graph there
IS no matching of size larger than k, it is enough to
exhibit a vertex cover of size k.

1. Correctness of the certificate:

For any vertex cover Q C V(G) and matching M C
E(G), every e € M must contain at least one ver-
tex of @ and these are all distinct. = |Q| > |M| (and
hence B(G) > o'(G) holds for every graph G).

2. Existence of optimal certificate for bipartite graphs:
Theorem. (Konig (1931), Egervary (1931))
If G is bipartite then

Proof. For any minimum vertex cover @, apply Hall's
Condition to match @ N X into Y \ Q and @ N'Y into

X\Q.O

13

Konig’s Theorem =- For bipartite graphs there al-
ways exists a vertex cover of size o/(G), convincing
Arthur that a particular matching of maximum size is
really maximum.

Remark. Such a cover NOT necessarily exists for non-
bipartite graphs (for example, odd cycles).

Corollary The problem “Is there a matching of size k
in this bipartite graph?” is in NPnco-NP, for any (func-
tion) k = k(n).

Certificate for arbitrary graphs

To convince Arthur that in a graph there is no mat-
ching of size larger than k, it is enough to exhibit a
subset S C V such that 2k =n — (o(G — S) — |S|).

Correctness of certificate: For any subset S C V,
any matching M, and any odd component C of G— S,
at least one vertex of C' is not saturated by an M-
edge within C'. Since these vertices can then only
be connected by an M-edge to vertices of S, all di-
stinct(!), at least o(G — S) — | S| vertices in odd com-
ponents are not saturated by M.

Existence of certificate:

Tutte’s Theorem (Min-max version) (Berge)

In every graph G, the maximum number of vertices
saturated by a matching is

20/ (G) =min{n —o(G — S) + 5] : S CV(G)}.
Proof. HW

Corollary The problem “Is there a matching of size
k in this graph?” is in NPNco-NP, for any (function)
k= k(n).

14

Approximation algorithm for TSP

One way to get closer to solving an NP-complete pro-
blem of the optimization kind: give fast algorithm that
finds a solution as close to optimal as you can.

How light is the lightest Hamilton cycle in a graph with
given edge weights?

Recall: Traveling Salesman Problem (TSP)

Given a weight function w : E(Kp) — IR> on the
edges, find a Hamilton cycle H of smallest weight

w(H) = Xecpm)w(e).

Special case: Is there a Hamilton cycle in a graph G?
(reduction via 1/2-weights)

Hence (the decision problem version of) TSP is NP-
complete as well.

A practical approach: Let wppr be the weight of a
Hamilton cycle of minimum weight. Forac > 1, a c-
approximation algorithmis an algorithm which outputs
a Hamilton cycle H with w(H) < c-wopr

15

Algorithm TSP-Approx

Step 1. Find MST T

Step 2. Create walk W “around” T, traversing each
edge twice

Step 3. Set H = W and go around H and iteratively
change it by “shortcuting” at any vertex which is used
the second time. Output H whene(H) = n

Remark. Running time: fast (Kruskal + O(n))

Theorem If w satisfies the triangle inequality, then
TSP-Approx IS a 2-approximation algorithm.

Proof. Let T,,,;,, aMST of G. Then w(W') = 2w (T},,5,)

By triangle inequality, shortcut decreases the sum of
the weights of H, so w(H) < 2w(T},n)

Hamilton path within an optimal traveling salesman
tour is a spanning tree, so w(T},in) < wWopT O

