
Polynomial time algorithms

Examples Sorting, Kruskal, Dijkstra

Common feature: number of steps bounded by a po-

lynomial of the input size.

Finishing in polynomial time is the theoretical choice

for an algorithm being “fast”.

• Ignores running time for small input size, concen-

trates on performance on large input; not neces-

sarily fast in practice

• But (unpractical) theoretical advance often inspi-

res improvements in practice

• Can take advantage of improving technology mo-

re

• Constant factor: hides dependence on concrete

system/implementation

• Less sensitive to definition of operation in runtime

calculations

Comparing O(n100) and O(2n) algorithms

1



The class P

We restrict to dealing with decision problems (pro-

blems with a YES or NO answer to every input)

The class P consists of decision problems that can be

solved by a polynomial time algorithm

Optimization problems can also be formulated as de-

cision problems

2



Arthur and Merlin – a glimpse of complexity

A: Show me a pairing, so my 150 knights can marry

these 150 ladies!

M: Not possible!

A: Why?

M: Here are these 93 ladies and 58 knights, none of

them are willing to marry each other.

A: Alright, alright ...

A: Seat my 150 knights around the round table, so that

neighbors don’t fight!

M: Not possible!

A: Why?

M: It will take me forever to explain you.

A: I don’t believe you! Into the dungeon!

3



The class NP

A YES/NO-problem is in the class NP, if for any YES-
input it could be verified fast (in time polynomial in the
input size), that the answer to the input is indeed YES.

In other words: there is a ”certificate”, which a compu-
ter (i.e., Arthur, i.e., a polynomial time algorithm) can
verify fast (the certificate can be provided by an all-
powerful oracle (i.e., Merlin))

NP: “nondeterministic polynomial time”

Examples:

- “Does this bipartite graph have a perfect matching?”
(provide perfect matching)
- “Does this bipartite graph have no perfect matching?”
(provide a subset S of one of the sides that has less
neighbors than elements; such a certificate exists by
Hall’s Theorem)
- “Does this graph have a Hamilton cycle?” (provide
Hamilton cycle)

Merlin’s Pech: “Does this graph have no Hamilton cy-
cle?” is not (known to be) in NP

4



P vs NP

Recall: a YES/NO-problem is in the class P, if there is
polynomial time algorithm that decides whether the
answer is YES or NO.

Of course: P ⊆ NP
(the running of the algorithm is itself a certificate (i.e.,
no need for Merlin))

Conjecture. P ̸= NP (1,000,000 US dollars)

Potential examples in NP\P : Hamiltonicity, 3-colorability,
independence number, . . .

NP-hard problem: every problem in NP can be redu-
ced to it in polynomial time (consequently, giving a po-
lynomial time algorithm for it would result in a polyno-
mial time algorithm for all problems in NP, and hence
P=NP)

NP-complete problem: NP-hard and contained in NP

Many problems are NP-complete: Hamiltonicity, 3-colorability,
4-colorability, planar 3-colorability
(but 2-colorability and planar 4-colorability are in P)

5



Characterizations

A YES/NO-problem is in the class co-NP: The answer
NO can be verified efficiently

Property has a “good” characterization → correspon-
ding decision problem is both in NP and co-NP

Examples:

- Does this bipartite graph have a perfect matching?
- ”Is this graph 2-colorable?” (NP-certificate: 2-coloring;
co-NP-certificate: odd cycle)
- ”Is this graph Eulerian?” (NP-certificate: ordered list
of the edges for an Eulerian circuit; co-NP-certificate:
vertex with odd degree (exists because of Euler’s Theo-
rem))

Of course: P ⊆ NP ∩ co-NP

Often: Problems in NP ∩ co-NP are also in P

However: People think P ̸= NP ∩ co-NP

We don’t know: status of problem ”Is there a factor
of n less than k?” (until 2002 even the status of the
problem “Is n a prime?” was also not known)

6



Perfect matchings in general graphs

NP-co-NP-characterization for bipartite graphs:

Corollary (of Hall’s Marriage Theorem) There is a per-

fect matching in a bipartite graph G = (X ∪ Y,E) iff

|X| = |Y | and |N(S)| ≥ |S| for every S ⊆ X.

Towards an NP-co-NP-characterization for general gra-

phs. Obstructions for p.m.: no graph on odd vertices

has p.m. The disjoint union of two odd graphs has

even number of vertices, but no p.m. The disjoint uni-

on of three odd graphs with each connected to a sin-

gle vertex is connected, has even number of vertices,

but no p.m. Etc ...

An odd component is a connected component with an

odd number of vertices. Denote by o(H) the number

of odd components of a graph H.

Theorem. (Tutte, 1947) A graph G has a perfect mat-

ching iff o(G− S) ≤ |S| for every subset S ⊆ V (G).

Corollary. Decision problem “Does this graph have

p.m.?” is in NP∩co-NP.

7



Matchings in general graphs

Proof.

⇒ Easy (think over).

⇐ (Lovász, 1975) Consider a counterexample G (G
satisfies Tutte’s Condition, but has no perfect matching)
with the maximum number of edges.

Claim. G + xy has a perfect matching for any xy ̸∈
E(G).

Define U := {v ∈ V (G) : dG(v) = n(G)− 1}

Case 1. G− U consists of disjoint cliques.

Straightforward to construct a perfect matching of G
(using Tutte’s condition for S = ∅). Contradiction.

Case 2. G− U is not the disjoint union of cliques.

Derive the existence of four vertices x, y, z, w such
that yx, yz ∈ E and xz, yw ̸∈ E.

w y

zx
∈ E(G)

/∈ E(G)

8



Idea: Obtain contradiction by constructing a perfect
matching M of G using perfect matchings M1 and
M2 of G+ xz and G+ yw, respectively, and the ed-
ges yx and yz.

How? M1 ∪ M2 is a subgraph of G + {xz, yw} that
spans all vertices and all its components are even
cycles or single edges. Choose edges of M these
component-wise.

If a component C
• does not contain xz: use edges of M1 to saturate

V (C).
• does not contain yw: use edges of M2 to saturate

V (C).
• contains both xz and yw: Then C is an even cycle

and the path C − y is of even length. x and z
are neighbors on C− y and not endpoints, so the
removal of one of them cuts C − y into two paths
of odd length. On each of these odd paths take
the unique maximum matching and saturate the
remaining two vertices of C (that were removed)
by the edge of G connecting them. (yx or yz)



Perfect matchings in regular graphs

Corollary of Hall’s Theorem: Every k-regular bipartite

graph, k ≥ 1, has a perfect matching

2-regular non-bipartite graph might have no perfect

matching. (odd cyces)

BUT! Corollary of Tutte’s Theorem:

Theorem. (Petersen, 1891) Every 3-regular graph with

no cut-edge has a perfect matching.

Proof. Check Tutte’s condition. Let S ⊆ V (G).

Double-count the number of edges between an S and

the odd components of G− S.

Observe that between any odd component and S the-

re are at least three edges.

9



Failed tries for characterizing Hamiltonicity

Recall: a sufficient condition from DMI.

Dirac’s Theorem. If G = (V,E) is a simple graph on

n ≥ 3 vertices and δ(G) ≥ n
2, then G is Hamiltonian.

The condition is best possible, but not necessary (Cn)

A slightly weaker sufficient condition:

Ore’s Condition. Let G be n vertex graph such that

for every uv ̸∈ E(G), we have d(u)+d(v) ≥ n, then

G is Hamiltonian.

Still not necessary...

A necessary condition? What is true for a single Ha-

milton cycle?

Proposition. If G is Hamiltonian, then for every S ⊆

V , c(G−S) ≤ |S| (where c(H) is the number of com-

ponents of graph H).

This is not sufficient. (Petersen graph)

10



Trying to strengthen the sufficient condition. A graph

G is t-tough if |S| ≥ tc(G − S) for every cut-set

S ⊆ V (G). The toughness of G is the maximum t

such that G is t-tough.

The toughness of the Petersen graph is 4/3.

Toughness Conjecture (Chvátal, 1973) There is a

value t such that every graph of toughness at least t

is Hamiltonian.

Bauer-Broersma-Veldman (2000) constructed a fami-

ly of non-Hamiltonian graphs with toughness approa-

ching 9/4. So the conjecture is not true for t < 9
4.

And even if we were able to prove the Toughness Con-

jecture for some t, it would not give a characterization

of Hamiltonicity, only sandwich it between two proper-

ties that are a “constant factors away from each other”.



Maximum matching problem

Optimization version of matching problem: “What is

the size of the maximum matching?”

Decision problem: “Is the maximum matching in this

graph is at least k?”

Perfect matching problem is special case: k = n
2.

Is the maximum matching problem also in NP∩co-NP

for every (function) k = k(n)?

Our NP-co-NP-characterization theorems turn out to

have the appropriate generalizations. → Min-Max Theo-

rems.

11



Certificate for bipartite graphs — Take 1

How to convince Arthur that in a bipartite graph G =

(X ∪Y,E) there is no matching of size larger than k?

Find a subset S ⊆ X, such that k = |X|− |S|+ |N(S)|

1. Correctness of the certificate:

For any matching M and subset S ⊆ X, at least

|S| − |N(S)| vertices of S are not saturated by M

(since vertices of S can only be matched into distinct

vertices of N(S)).

2. Existence of optimal certificate:

By a min-max generalization of Hall’s Theorem:

Hall’s Theorem (Min-max version) For every bipar-

tite graph G = (X ∪ Y,E),

α′(G) = min{|X|− |S|+ |N(S)| : S ⊆ X},

where α′(G) = size of largest matching.

Proof. HW

This implies that there exists a subset S ⊆ X, such

that |X|− |S|+ |N(S)| = α′(G).

12



Certificate for bipartite graphs — Take 2

Recall: C ⊆ V (G) is a vertex cover if for every edge

e ∈ E(G), e ∩ C ̸= ∅.

β(G) = min{|C| : C is a vertex cover}

To convince Arthur that in an arbitrary(!) graph there

is no matching of size larger than k, it is enough to

exhibit a vertex cover of size k.

1. Correctness of the certificate:

For any vertex cover Q ⊆ V (G) and matching M ⊆

E(G), every e ∈ M must contain at least one ver-

tex of Q and these are all distinct. ⇒ |Q| ≥ |M | (and

hence β(G) ≥ α′(G) holds for every graph G).

2. Existence of optimal certificate for bipartite graphs:

Theorem. (König (1931), Egerváry (1931))

If G is bipartite then β(G) = α′(G).

Proof. For any minimum vertex cover Q, apply Hall’s

Condition to match Q ∩X into Y \Q and Q ∩ Y into

X \Q. ✷

13



König’s Theorem ⇒ For bipartite graphs there al-

ways exists a vertex cover of size α′(G), convincing

Arthur that a particular matching of maximum size is

really maximum.

Remark. Such a cover NOT necessarily exists for non-

bipartite graphs (for example, odd cycles).

Corollary The problem “Is there a matching of size k

in this bipartite graph?” is in NP∩co-NP, for any (func-

tion) k = k(n).



Certificate for arbitrary graphs

To convince Arthur that in a graph there is no mat-

ching of size larger than k, it is enough to exhibit a

subset S ⊆ V such that 2k = n− (o(G− S)− |S|).

Correctness of certificate: For any subset S ⊆ V ,

any matching M , and any odd component C of G−S,

at least one vertex of C is not saturated by an M -

edge within C. Since these vertices can then only

be connected by an M -edge to vertices of S, all di-

stinct(!), at least o(G − S)− |S| vertices in odd com-

ponents are not saturated by M .

Existence of certificate:

Tutte’s Theorem (Min-max version) (Berge)

In every graph G, the maximum number of vertices

saturated by a matching is

2α′(G)=min{n− o(G− S) + |S| : S ⊆ V (G)}.

Proof. HW

Corollary The problem “Is there a matching of size

k in this graph?” is in NP∩co-NP, for any (function)

k = k(n).

14



Approximation algorithm for TSP

One way to get closer to solving an NP-complete pro-
blem of the optimization kind: give fast algorithm that
finds a solution as close to optimal as you can.

How light is the lightest Hamilton cycle in a graph with
given edge weights?

Recall: Traveling Salesman Problem (TSP)

Given a weight function w : E(Kn) → IR≥ on the
edges, find a Hamilton cycle H of smallest weight
w(H) =

∑
e∈E(H)w(e).

Special case: Is there a Hamilton cycle in a graph G?
(reduction via 1/2-weights)

Hence (the decision problem version of) TSP is NP-
complete as well.

A practical approach: Let wOPT be the weight of a
Hamilton cycle of minimum weight. For a c ≥ 1, a c-
approximation algorithm is an algorithm which outputs
a Hamilton cycle H with w(H) ≤ c · wOPT

15



Algorithm TSP-Approx

Step 1. Find MST T

Step 2. Create walk W “around” T , traversing each

edge twice

Step 3. Set H = W and go around H and iteratively

change it by “shortcuting” at any vertex which is used

the second time. Output H when e(H) = n

Remark. Running time: fast (Kruskal + O(n))

Theorem If w satisfies the triangle inequality, then

TSP-Approx is a 2-approximation algorithm.

Proof. Let Tmin a MST of G. Then w(W ) = 2w(Tmin)

By triangle inequality, shortcut decreases the sum of

the weights of H, so w(H) ≤ 2w(Tmin)

Hamilton path within an optimal traveling salesman

tour is a spanning tree, so w(Tmin) ≤ wOPT ✷


