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Exercise 1 [10 points]

(1) Dijkstra’s Algorithm.
Input: Graph G = (V,E), weight function w : E → R≥0, an initial vertex
u ∈ V .

Output: For all v ∈ V , D(v) = shortest distance from u to v.

Initialization: Extend w so that w(xy) =∞ for all xy ∈
(
V
2

)
\ E. Maintain a

list D of shortest distances from u indexed by the vertices and put D(u) = 0,
D(v) = ∞ for all v ∈ V \ {u}. Maintain a list W of visited vertices and start
with W = ∅.
Iteration:

• Let v0 = argmin{D(v) : v ∈ V \W}.
• Update W = W ∪ {v0}.
• For all v ∈ V \ W , IF D(v0) + w(v0v) < D(v), THEN update D(v) =
D(v0) + w(v0, v).

Termination: Stop if W = V and output D.

(2) At the initialisation stage we have W = ∅ and D = (0,∞, . . . ,∞) where the
order of the vertices is a, b, c, d, e, f . Then we have the following iterations.

1. v0 = a, W = {a}, D = (0, 2, 4,∞,∞,∞).

2. v0 = b, W = {a, b}, D = (0, 2, 3, 6, 4,∞).

3. v0 = c, W = {a, b, c}, D = (0, 2, 3, 6, 4,∞).

4. v0 = e, W = {a, b, c, e}, D = (0, 2, 3, 6, 4, 6).

5. v0 = d, W = {a, b, c, e, d}, D = (0, 2, 3, 6, 4, 6).

6. v0 = f , W = {a, b, c, e, d, f}, D = (0, 2, 3, 6, 4, 6).

Return D = (0, 2, 3, 6, 4, 6).

Exercise 2 [10 points]



(1) A decision problem is in NP if for all the instances I of that problem where
the answer is YES, there exists a polynomial time algorithm that proves that
the answer for I is yes (possible with the help of a non-deterministic oracle).
A decision problem is NP-complete if it is in NP and every NP problem has a
polynomial time reduction to the problem.

(2) The k-SAT problem is in NP, because if the k-CNF formula is satisfiable, the
proof is just the value assignment, which can be checked in time proportional
to the number of clauses. We will give a polynomial time reduction of 3-SAT to
k-SAT to show that k-SAT is NP-complete, since every NP problem can then be
reduced to a k-SAT by first reducing it to 3-SAT and then using this reduction.

Let f(x1, . . . , xn) be a 3-CNF with clauses C1, . . . , Cm. Introduce k − 3 new
variables, y1, . . . , yk−3 and let D1, . . . , D2k−3 be the all the 2k−3 clauses of length
k − 3 we can make out of these variables. Consider the k-CNF,

g(x1, . . . , xn, y1, . . . , yk−3) = (∧2k−3

i=1 (C1 ∨Di)) ∧ · · · ∧ (∧2k−3

i=1 (Cm ∨Di)).

Then g has 2k−3m clauses. We claim that f is satisfiable if and only if g is
satisfiable.

Say f is satisfiable. Then each Ci has a literal that has value T , and hence
each Ci ∨ Dj has a literal that has value T . This implies that g is also satis-
fiable. Now say f is not satisfiable, and take any assignment of the variables
x1, . . . , xn, y1, . . . , yk−3. No matter what the assignment of y1, . . . , yk−3 there
exists an j such that Di is false on these values1. Since f is unsatisfiable, there
exists an i such that Ci is false. Therefore, Ci ∨Dj is false in g, and hence g is
false.

This reduction is polynomial time because the number of variables in g is n+k−3
and the number of clauses and 2k−3m, and k is fixed.

Exercise 3 [10 points]

(1) From Tutte’s theorem, it suffices to show that for every S ⊆ V (G), |S| ≥ o(G\S)
where o(G \ S) is the number of connected components in the graph G[V \ S].
Let S ⊆ V (G), and let C be an odd component of G[V \ S]. The number of
edges between S and C is at least κ′(G) > 1, since otherwise we will have less
than κ′(G) edges of G whose removal disconnects the graph. By summing up
the degrees of the vertices in C, and using the 3-regularity of the graph, we have

3|V (C)| =
∑
v∈G

degG(v) = |[S, V (C)]|+ 2E(C),

where [S, V (C)] is the set of edges with one end point in S and another end point
in V (C). Here we have used the Handshake Lemma in the second equality. This
implies that |[S, V (C)]| = 3|V (C)|−2E(C) is an odd number, and hence at least

1we did this in a homework



equal to 3 (since it can’t be equal to 1 as we showed above). By summing up
the degrees of vertices in S, as before, we have

3|S| =
∑
v∈S

degG(v) ≥
∑

C is an odd componenet

|[S, V (C)]| ≥ 3o(G \ S).

Therefore, |S| ≥ o(G \ S).

v

(2) The removal of v leaves three odd components, and hence this 3-regular graph
has no perfect matchings by Tutte’s theorem.

Exercise 4 [10 points]

(1) Given f : V (G)→ 2N, G is called f -colorable if there exists c : V (G)→ N, such
that c(v) ∈ f(v)for all v ∈ V (G), and if uv ∈ E(G), then c(u) 6= c(v).

χl(G) = min{k ∈ N : G is f -colorable,∀f : V (G)→ 2N with f(v) ≥ k,∀v ∈ V (G)}.

(2) We will prove the following Lemma from which we will derive the main result.

Lemma 1. Let G be a plane graph in which the outer face is a cycle C =
v1, . . . , vk and all the other faces are triangles. Assume that v1, v2 are coloured
1 and 2, respectively, for every vertex v on C \ {v1, v2} we have a list L(v) of at
least 3 colours, and for every vertex v in G \ C we have a list L(v) of at least
five colours. Then G can be properly list coloured with these lists.

Proof. We apply induction on the number of vertices. For n = 3, we have a
triangle for which this result holds because v3 has a colour other than 1 and 2
available for it. Now assume that the results holds true for all graphs with up
to n − 1 vertices and let C = v1, . . . , vk be the outerface of an n vertex graph
G, as in the Lemma.



Case 1: C has a chord vivj, where vi and vj are non-adjacent and 2 ≤ i < j
(this can be assumed without loss of generality). Let G1 be the graph containing
the cycle C1 = v1, . . . , vi, vj, vj+1, . . . , vk, v1 and its interior vertices. It satisfies
the condition of the Lemma above, and has less vertices than G. Therefore
by induction hypothesis we can properly colour it. Once we have obtained this
colouring, vi and vj receive a colour. We can then apply the induction hypothesis
to the graph G2 consisting of the cycle vi, vi+1, . . . , vj, vi, and its interior, with
vi and vj playing the role of v1 and v2. This gives us a proper colouring of the
whole graph.

Case 2: C has no chords. Let v1, u1, u2, . . . , um, vk−1 be the neighbours of vk in
the clockwise order (assuming that v1, . . . , vk are also in a clockwise order). Since
all the bounded faces are triangles, there must be a path P = v1, u1, . . . , um, vk−1
in G. Since G has no chords, P∪(C\{vk}) is a cycle C ′. Let c1, c2 be two distinct
elements of the set L(vk)\{1}. For all 1 ≤ i ≤ m, define L′(ui) = L(ui)\{c1, c2},
and if L′(ui) still has size more than 3 elements, then remove some to make sure
that |L′(ui)| = 3 for all i. For all v ∈ V (G) \ {u1, . . . , um} define L′(v) = L(v).
By the induction hypothesis the graph consisting of C ′ and its interior vertices
now has a proper list colouring c′ with L′ as the list assignment. We can then
colour vk using an element of L(vk) \ {1, c′(vk−1)}, which has size 1, to get a
proper colouring of G.

Now given a planar graph G, and some lists of colours on its vertices, take a
planar embedding of G, triangulate it (that is, keep adding edges to it until it
stays planar). Then we are in the setting of the Lemma above, and thus this
larger graph can be properly coloured using these list which implies that G can
be properly coloured.

Exercise 5 [10 points]

(1) χ′(G) is the minimum k for which G has a proper edge colouring with k colours,
where a properly colouring is a map c : E(G) → [k] such that for all e 6= f ∈
E(G) with e ∩ f 6= ∅, we have c(e) 6= c(f). Vizing’s theorem says that for a
simple graph G, we have χ′(G) ≤ ∆(G) + 1.

(2) Since G is a d-regular graph, we know that χ′(G) ≥ d as the edges adjacent
to any single vertex must receive different colours. From Vizing’s theorem we
know that χ′(G) ≤ d + 1. We show that since G has a cut vertex v, we can’t
have χ′(G) = d, from which we will conclude that χ′(G) = d + 1. Say we have
a d-colouring c of G. Let C be a connected component of G − v. Let vw be
an edge from v to a vertex w of C and let vw′ be an edge from v to a vertex
w′ outside C. The edges whose colour is equal to c(vw) and are contained in
C form a perfect matching in C − w, which implies that |C| is odd. The edges
whose colour is equal to c(vw′) and are contained in C form a perfect matching
in C, which implies that |C| is even. This is the required contradiction.



Exercise 6 [10 points]

(1) Given n men m1, . . . ,mn and n women w1, . . . , wn, with a list L(x) for each
person x that consists of a preference order for the n members of the opposite
gender, we want to find a stable perfect matching between the men and women.
Here a stable matching is defined as a matching in which we do not have an
unmatched pair (mi, wj) such that mi prefers wj over his current partner and
wj prefers mi over her current partner.

Gale-Shapley Algorithm.
Input: The preference lists of n men and n women.

Output: A stable matching.

Iteration: In the i-th round, each man proposes to the most preferred woman
on his list, the women who are proposed to say ‘maybe’ to the best proposal
she receives in this round and rejects everyone else. If there are no rejections
in the round, then we terminate and return the current matching (with the
‘maybe’s’), otherwise the men crosses out the women who reject them and we
go to the (i+ 1)-th round.

(2) Let S be the stable matching returned by the proposal algorithm above, and
suppose that it’s not man-optimal. Let i be the first round where some man
proposes to a valid partner and gets rejected. Pick m to be one such man in
this round and let w the valid partner it proposes to in round and gets rejected
because of a man m′ 6= w who proposed to her and was higher on the preference
list. Since w is a valid partner of m, there exists a stable matching S ′ in which
(m,w) are matched to each other. Let w′ 6= w be the partner of m′ in S ′. We
claim that (m′, w) is an unstable pair in S ′. As we said above, w prefers m′ to
m. Since m’ proposed to w, he must have been rejected by all of the women on
his list before w. Since this is the first time a man is rejected by his best valid
partner, m′ has not been rejected by his best valid partner in any rounds before
i, and therefore by any of his valid partners. In particular, w′, which is a valid
partner of m′, must be after w on the list of m′. This shows that (m′, w) is an
unstable pair in S ′.


