Algorithmic Combinatorics (Discrete Mathematics IT) WS 2018 / 2019
Tibor Szabd

Connected components, connectivity, and spanning trees.

These are some rough informal notes—to augment your own notes.

Algorithms for connectedness. How to find out whether a graph G is connected? The
most natural idea is to take a vertex v, explore its neighbors, then its neighbors’ neighbors,
and so on. This way we explore the connected component of v. If at the end this is V/(G),
then G is connected, otherwise not. How to formalize this a bit more?

Algorithm Comp

Input: graph G, vertex v € V(G)

Idea: maintain a set @ of vertices that were reached (on a path from v), but not yet
explored for their neighbors, and a set W of vertices whose neighbors were explored. W will
be disjoint from Q.

Initialization: Q = {v}, W =10

Iteration: For ¢ > 1 Step u:

e Define v; to be an “arbitrary” vertex in @ \ W and move it over to W. That is, update

Q:=Q\{v;} and W :=W U {v;}
e Update Q := Q U (N(v;) \ W) (some of the added vertices might already be in Q)
e IF @ = () then STOP and return W =: W* (as the component of v in G)
e ELSE iterate (— Step i + 1)

Theorem 1. The algorithm terminates in at most n steps. The connected component Cg(v)
of v in G is equal to the set W* that Comp outputs

Proof. In each step the algorithm either terminates or moves a vertex from @ to W, where
it stays forever. So after at most n steps there are no more vertices not in W, hence @ is
empty and Comp stops. (One uses here that @ N W = (), which can be proved by induction
on the number of steps in the iteration.)

It can also be proved by induction on the number of steps in the iteration that every
vertex u that was ever in ) is connected to v. (A vertex u becomes part of @) in Step i
only if it is the neighbor of vertex v; which was in @ in Step (i — 1), so by induction was
connected to v.)

Then it follows that W* C Cg(v), since W* is just the final state of W and a vertex u is
moved to W only if in the previous step it was part of (), and hence connected to v.

In the other direction, suppose (for a contradiction) that there is a vertex u € Cg(v)\W*.
Let P be an arbitrary vu-path (which exists since u is in the connected component of v).



Let w € V(P) be the first vertex on P that is not in W* (there is such a vertex since u is
one for example; w might even be equal to u). Let w™ be the predecessor of w on P. Then
w~ must be in W* (by the definition of w). But in the step when w™ was moved to W, all
its neighbors NOT in W (w~ among them) was moved to ). Hence w~ became part of @
during the algorithm and the only way to leave () is to be moved to W. Since @) is empty
upon termination, w~ had to be moved to W at some point, where it would have stayed and
ended up in W*, a contradiction. O

Note that in the description of the algorithm, we left it open' that in what order we
choose the next vertex in () which is to be moved to W. In the next section we elaborate on
this: there are a couple of very useful, special ways to select.

Spanning Trees, DFS-trees, BFS-trees. Our goal here is to use Algorithm Comp to not
only identify the component of v, but also build a spanning tree of it. To this end whenever
a vertex v; is moved to W from @), we also identify an edge going from v; to W and add it to
a set F' of edges we maintain, which forms a spanning tree on W. (Note that there is always
at least one between v;: if v; was added to @ in Step j < 4, then v; € N(v;) \ W and in the
same step the neighbor v; of v; was added to W). This way, together with the set W, we
recursively also build a spanning tree on W: in each step we add a leaf anda pendant edge

To facilitate the building of this tree, when we put a vertex x into () in Step ¢, we do
so by recording the pair (z,v;), which is a potential edge from x to W: an edge we might
choose into our spanning tree F' when we later add = to W.

Sometimes we just want any spanning tree, but sometimes we prefer one tailored to our
specific problem at hand.

What kind of tree we will build depends heavily on our rule how we choose the next
“arbitrary” vertex to be moved from ) to W. For this we will maintain () as a list, in each
step adding the vertices of N(v;) \ W somewhere to this list (not paying attention whether
we add the same vertex multiple times), and always choosing v;;; to be the first on this list.

To where exactly we add N(v;) \ W to the list produces very different trees.

If we imagine @ like a “queue”, where the new neighbors must stand to the end of the
line, the process is called BreadthFirstSearch and the tree produced is called a BFS-tree.
BreadthFirstSearch prefers to first explore all (still unexplored) neighbors of the vertex
that was added to W the earliest. A BFS-tree will contain paths as short as possible.

If, instead, we imagine @) like a “stack” of items, where we always pack the new neighbors
on the top, the process is called DepthFirstSearch and the tree produced is called a DFS-
tree. DepthFirstSearch prefers to first explore a neighbor of the vertex that was most
recently added to Q). A DFS-tree tends to be enlonagted, containing long paths of G.

Finding a minimum weight spanning tree. Given a connected graph G with edge
weights w : E(G) — R, the task is to find a spanning tree 7' C G whose weight w(T") : Y €

lwe said “arbitrary”



E(T)w(e) is minimum among the weights of all spanning trees of G. (In this case we call T
a MST (minimum-weight spanning tree).)

A naive algorithm would take a look at all spanning trees, and calculate their weight.
This potentially could involve checking all n"~2 spanning trees on n labeled vertices (DMI,
Cayley’s Theorem) and performing n — 2 additions for each; all together ©(n™~!) number of
steps (which is huge ...)

In DMI that the greedy type algorithm of Kruskal, which maintains a spanning forest
F of G and iteratively adds the cheapest possible edge that does not create any cycle, does
find an MST.

Here we give a tiny bit more concrete description of this algorithm, so we can bound its
running time (and prove that it is polynomial).

Kruskal|G, w]

Input: graph G and weight function w : E(G) — R

Idea: Maintain spanning forest F' and iteratively add the cheapest edge that does not
create a cycle. For each vertex v € V(F'), maintain a label ¢, (that serving to identify which
vertices are in the same component of F')

Initialization: V(F) =V(G), E(F) = 0. Let ¢, :=v.

Step 0 order edges according to weight, say w(e;) < --- < w(ey,), where E(G) = {eq,...,em}.

Step i Iteratively, for every ¢ > 1, check whether the next edge e; := uw would close a cycle
when added to F'. That is,

IF ¢, = ¢, then iterate (— (i + 1)).

ELSE update F' := F + uw and for every z € V with ¢, = ¢, update ¢, := ¢,. Then
iterate (— (7 +1)).

Step LAST Output F* := F (claiming it be a MST).

We have seen in DMI, that this algorithm terminates and its correct, that is, F* is min
weight spanning tree of G. (Note that the labeling maintains the properties that at before
each step of the algorithm, (1) the labels within each component of F' are the same, and
(2) the labels of two vertices in different components are different. This implies then F is
always a forest, since we add and edge e = uw to F' if and only ¢, # c¢,, which happens if
and only if v and w are in different components. Hence we (1) throw away all edges that are
going within the same component (and hence would create a cycle) and we (2) add any edge
that connects two distinct components (and then adjust the labels so the crucial properties
of the labels are maintained).

This way Kruskal Algorithm terminates with a spanning tree after adding n — 1 edges to
F.

What is the running time for a graph with n vertices and m edges? The sorting at the
beginning takes O(mlogm) comparisons. In each iteration we check whether they are in
the same component of F'| by checking whether ¢, = ¢,,, which takes just O(1) step. Then,
depending on the result, we either do nothing else in this step, or perform the updating of the



index of the components of one of the vertices, which takes at most O(n) steps. There are m
iterations, so the cumulative running time is O(mlogm)+O(m)+O(n?) = O(mlogm+n?).

This is O(mlogm) if G is dense (i.e., has a lot of edges; concretely if m = Q (1(?;” ).

Otherwise the running time is at most O(n?) (but with an appropriate data structure the
second step also only needs mlogm steps).



