
Recall: a real-life scenario

A company with 100 employees has six projects run-
ning simultaneously, each having its own leader. Each
project leader wants to schedule a one hour project
meeting, but since an employee might be part of se-
veral projects and each project member should be
present at each relevant meeting, the scheduling is
problematic.

The company rents an office building to accommoda-
te the meetings and wants to minimize the cost. The-
re are several rooms in the building, so meetings can
take place parallel, but rooms cannot be rented sepa-
rately.

The company requests project leaders to be available
between 8-10 and tries to schedule a conflict-free pro-
ject meeting schedule by finding a proper coloring of
the conflict graph of the projects, using the timeslots
8-9 and 9-10 as colors.
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Recall: Vertex coloring, chromatic number

A k-coloring of a graph G is a labeling c : V (G)→ S,
where |S| = k. The labels are called colors; the verti-
ces of one color form a color class.

A k-coloring is proper if adjacent vertices have diffe-
rent labels. A graph is k-colorable if it has a proper
k-coloring.

The chromatic number is

χ(G) := min{k : G is k-colorable}.

A graph G is k-chromatic if χ(G) = k. A proper k-
coloring of a k-chromatic graph is an optimal coloring.

Complexity: 2-colorability is in P, but 3-colorability is
NP-complete (reduce to 3-SAT; HW)
k-colorability is in NP, but it is not known to be in co-
NP for k ≥ 3.
Want: sufficient conditions guaranteeing non-k-colorability
; search for lower bounds on χ(G)
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Recall: Lower bounds and their tightness

Observation For every graph G, χ(G)≥ω(G).

• when χ(G) =ω(G):
- cliques, bipartite graphs, complement of bipartite

graphs, interval graphs, perfect graphs

• when χ(G) >ω(G):
- odd cycles, complement of odd cycles

(Perfect Graph Theorem!)
- Mycielski’s Construction:

graphs with ω(G) = 2 and χ(G) > 101010

- Typical behaviour:
For the uniform random graph G = G(n, 1

2),

χ(G) ≈
n

2 log2 n

ω(G), α(G) ≈ 2 log2 n

A typically asymptotically tight lower bound.
For every graph G, we have

χ(G)≥
v(G)

α(G)
.
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Forced subdivision

G contains a Kk ⇒ χ(G) ≥ k
G contains a Kk 6⇐ χ(G) ≥ k (already for k ≥ 3)

... and the uphill battle for useful/nice necessary con-
ditions for an NP-complete property starts ...

Hajós’ Conjecture (1961)
G contains a Kk-subdivision ?⇐ χ(G) ≥ k

An H-subdivision is a graph obtained from H by successive
edge-subdivisions.

Remark. The conjecture is true for k = 2 and k = 3.

Theorem (Dirac, 1952) Hajós’ Conjecture is true for
k = 4.

Counterexample (Catlin, 1979)
Hajós’ Conjecture is false for k ≥ 7. (HW)

Hadwiger’s Conjecture (1943)
G contains a Kk-minor ?⇐ χ(G) ≥ k

Proved for k ≤ 6. Open for k ≥ 7.
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Proof of Dirac’s Theorem

Theorem (Dirac, 1952) If χ(G) ≥ 4 then G contains
a K4-subdivision.

Proof. Induction on v(G). v(G) = 4⇒ G = K4.

W.l.o.g. G is 4-critical.

Case 0. κ(G) = 0 would contradict 4-criticality

Case 1. κ(G) = 1 would contradict 4-criticality

Case 2. κ(G) = 2. Let S = {x, y} be a cut-set.

xy ∈ E(G) would contradict 4-criticality

Hence xy 6∈ E(G).
χ(G) ≥ 4 ⇒ G must have an S-lobe H, such that
χ(H+xy) ≥ 4. Apply induction hypothesis toH+xy

and find a K4-subdivision F in H + xy. Then modify
F to obtain a K4-subdivision in G.

Let S ⊆ V (G). An S-lobe of G is an induced subgraph of G
whose vertex set consists of S and the vertices of a compo-
nent of G− S.
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Proof of Dirac’s Theorem— Continued

Case 3. κ(G) ≥ 3. Let x ∈ V (G). G − x is 2-
connected, so contains a cycle C.

Claim. There is an x,C-fan of size 3.

Proof. Add a new vertex u to G connecting it to the
vertices ofC. By the Expansion Lemma the new graph
G′ is 3-connected. By Menger’s Theorem there exist
three p.i.d x, u-paths P1, P2, P3 in G′. 2

Given a vertex x and a set U of vertices, and x, U -fan is a set
of paths from x to U such that any two of them share only the
vertex x.
Fan Lemma. G is k-connected iff |V (G)| ≥ k + 1 and for
every choice of x ∈ V (G) and U ⊆ V (G), |U | ≥ k, G has
an x, U -fan.

Then C ∪ P1 ∪ P2 ∪ P3 − u is K4-subdivision in G.
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Upper bounds: tightness

Recall: Proposition χ(G)≤∆(G) + 1.

Proof. Algorithmic; Greedy coloring (Order vertices ar-
bitrarily; color in this order with first available color) 2

Recall: Definition A graph is called r-degenerate, if
there is an ordering v1, v2, . . . , vn of the vertices such
that for every i = 1,2, . . . , n− 1, we have

|N(vi+1) ∩ |{v1, . . . , vi}| ≤ r.

Recall: Theorem.G is r-degenerate⇒ χ(G)≤ r + 1.

Proof. Greedy coloring using the special vertex order.

Brooks’ Theorem. (1941) LetG be a connected graph.
Then χ(G) = ∆(G) + 1 iff G is a complete graph

or an odd cycle.

Proof. Trickier, but still greedy coloring...
order: follow spanning tree from leaves to root
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Proof of Brooks’ Theorem. Cases.

Case 1. G is not regular.
Let the root be a vertex with degree < ∆(G).

Case 2. G has a cut-vertex.
Let the root be the cut-vertex.

Assume G is k-regular and κ(G) ≥ 2.

Case 3. k ≤ 2. Then G = Cl or K2.

Assume k ≥ 3. We need a root vn with nonadjacent
neighbors v1, v2, such thatG−{v1, v2} is connected.
Let x be a vertex of degree less than v(G)− 1.

Case 4. κ(G− x) ≥ 2.
Let vn be a neighbor of x, which has a neighbor y,
such that y and x are non-neighbors. Then let v1 = x
and v2 = y.

Case 5. κ(G− x) = 1.
Then x has a neighbor in every leaf-block ofG−x. Let
vn = x and v1, v2 be two neighbors of x in different
leaf blocks of G− x.

8



Block-decomposition of connected graphs

Maximal induced subgraph of G with no cut-vertex is
called block of G.

Lemma. Two blocks intersect in at most one vertex.

Proof. If B1 and B2 have no cut-vertex and share at
least two vertices then B1 ∪B2 has no cut-vertex eit-
her.

The Block/Cut-vertex graph of G is a bipartite graph
with vertex set

{B : B is a block} ∪ {v : v is a cut-vertex}.

Block B is adjacent to cut-vertex v iff v ∈ V (B).

Proposition. The Block/Cut-vertex graph of a connec-
ted graph is a tree.
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A more complicated real-life scenario

Project leaders are very important and very busy and
not so flexible to be available at wish of the company;
they want to identify the possible one-hour-slots them-
selves. One might want to be available 8-10, the other
9-11, the third one 8-9 and 10-11, etc.

Is a conflict-free scheduling still possible? Or the ad-
ministration should ask project leaders to be available
for more than just two one-hour timeslots? How many
should they ask for?

This scenario, when each vertex (project) has its own
set of available colors (timeslots) is the setting of list
coloring.
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List Coloring

v ∈ V (G), L(v) a list of colors
A list coloring is a proper coloring f of G such that
f(v) ∈ L(v) for all v ∈ V (G).

G is k-choosable or k-list-colorable if every assignment
of k-element lists permits a proper coloring.

χl(G) = min{k : G is k-choosable}

Claim χl(G) ≥ χ(G)

Example: K2,2

Example: χl(K3,3) 6= χ(K3,3)

Claim χl(G) ≤∆(G) + 1

Example: χl(G)− χ(G) can be arbitrary large:
PropositionKm,m is not k-choosable form =

(
2k−1
k

)
.

Complexity: It is unclear whether k-choosability is in
NP and it is also unclear whether it is in co-NP. So it
is “more difficult” than k-colorability!
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Recall: Four-Color Theorem (Appel-Haken, 1976)
Every planar graph is 4-colorable.
Proof: Very-very long, tedious.

Recall: Five-Color Theorem (Heawood, 1890)
Every planar graph is 5-colorable.
Proof: Proved in Discrete Math I.

HW. There is a planar graph which is not 4-list-colorable.
(Voigt, Mirzakhani)

Theorem. (Thomassen) Every planar graphG is 5-list
colorable.

Stronger Statement. Let G be a plane graph with an
outer face bounded by cycle C. Suppose that
- two vertices v1, v2, v1v2 ∈ E(C) are colored by two
different colors,
- the other vertices of C have 3-element lists assigned
to them and
- the internal vertices have 5-element lists assigned to
them.
Then the coloring of v1 and v2 can be extended pro-
perly to the whole G using colors from the assigned
lists for each vertex.
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Proof.. W.l.o.g. every face of G is a triangle, except
maybe the outer face.

Induction on v(G). For v(G) = 3, G = K3, OK.

For v(G) > 3, there are two cases.

Case 1. There is a chord vivj of C.
Cut to two smaller graphs along the chord, color first
the piece where both v1 and v2 lie, then color the
other piece.

Case 2. C has no chord.
Designate two colors x, y ∈ L(v3) such that they dif-
fer from the color of v2. Color G − v3 by induction
(boundary is a cycle!), such that x and y are deleted
from the lists of the interior neighbors of v3. Extend
the coloring to v3.



Edge coloring

A k-edge-coloring of a multigraph G is a function c :
E(G) → S, where |S| = k. The k-edge-coloring is
proper if incident edges have different c-values (co-
lors). A multigraph is k-edge-colorable if it has a pro-
per k-edge-coloring. The edge-chromatic number (or
chromatic index) of a loopless multigraph G is

χ′(G) := min{k : G is k-edge-colorable}.

Examples. K4,K5,Kn, ∆(G) ≤ χ′(G)

Motivation. Efficient round-robin tournament schedu-
ling.

Observation The color classes of a proper edge co-
loring are matchings. In particular, if G is regular and
∆(G) = χ′(G), then G has a perfect matching.

Theorem. (König, 1916)
For a bipartite multigraph G, χ′(G) = ∆(G)

Proposition. χ′(Petersen) = 4.
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Line graphs and Vizing’s Theorem

Line graph L(G): vertex set V (L(G)) = E(G) and
edge set E(L(G)) = {ef : e ∩ f 6= ∅}

Observations

• M ⊆ E(G) is a matching⇔
M ⊆ V (L(G)) is an independent set

• c : E(G)→ [k] is a proper edge-coloring of G⇔
c : V (L(G))→ [k] is a proper vertex-coloring of
L(G)

• Hence χ′(G) = χ(L(G)), so
∆(G) ≤ ω(L(G))

≤ χ′(G) ≤ ∆(L(G)) + 1
≤ 2∆(G)− 1

Theorem. (Vizing, 1964) For a simple graph G,

χ′(G) ≤∆(G) + 1.

Generalization. If the maximum edge-multiplicity in a
multigraph G is µ(G), then χ′(G) ≤∆(G) + µ(G)

Example. Fat triangle; χ′(G) = ∆(G) + µ(G).
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Proof of Vizing’s Theorem (A. Schrijver)

Induction on v(G).

If v(G) = 1, then G = K1; the theorem is OK.

Assume v(G) > 1. Delete a vertex v ∈ V (G). By
induction G− v is (∆(G) + 1)-edge-colorable.

Why is G also (∆(G) + 1)-edge-colorable?

We prove the following

Stronger Statement. Let G be a simple graph and
k ≥ 1 be an integer. Let v ∈ V (G), such that

• d(v) ≤ k,

• d(u) ≤ k for every u ∈ N(v), and

• d(u) = k for at most one u ∈ N(v).

Then
G− v is k-edge-colorable⇒ G is k-edge-colorable.
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Proof of the Stronger Statement I

Induction on k (!!!)

For k = 1 it is OK.

W.l.o.g. d(u) = k − 1 for every u ∈ N(v), except for
exactly one w ∈ N(v) for which d(w) = k.

Let c : E(G − v) → {1, . . . , k} be a proper k-edge-
coloring of G− v, which minimizes∗

k∑
i=1

|Xi|2,

where Xi := {u ∈ N(v) : u is missing color i}.

∗I.e., we choose the coloring so the |Xi|s “as equal as possible”.
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Proof of the Stronger Statement II

Case 1. There is an i, with |Xi| = 1. Say Xk = {u}.

Let G′ = G− uv − {xy : c(xy) = k}.
Apply the induction hypothesis for G′, k − 1, and v.

Case 2. |Xi| 6= 1 for every i = 1, . . . , k.

Then
k∑
l=1

|Xl| = 2d(v)− 1 < 2k.

So there are colors i with |Xi| = 0 and
j with |Xj| ≥ 3.

Let H ⊆ G be subgraph spanned by the edges of
color i and j.
Switch colors i and j in a component C of H, where
C ∩Xi 6= ∅.
This reduces

∑k
l=1 |Xl|

2, a contradiction. 2

17



Edge-List Coloring

List Coloring Conjecture (1985) χ′l(G) = χ′(G)

HW (from last week) True when G is a cycle.

Greedy Coloring χ′l(G) ≤ 2χ′(G)− 1.

Theorem (Kahn, 1996) χ′l(G) = χ′(G)(1 + o(1))

Proof: probabilistic, difficult

Theorem (Galvin, 1995) For any bipartite graph B,

χ′l(B) = χ′(B).

We prove Galvin’s Theorem only forB = Kn,n (which
was known as the Dinitz Conjecture since 1979)
HW: Modify proof for arbitrary bipartite graph B.

Recall χ′(Kn,n) = n. So, no matter how each edge
ofKn,n gets assigned a list of n colors, we should find
a proper coloring of the edges from their lists.

First we distill important structural information about
greedy colorings, so to accommodate a tricky inducti-
ve argument.
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Kernels and list-colorings

A kernel of a digraph D is an independent set I ⊆
V (D), such that for every x ∈ V (D) \ I there is y ∈
S, such that ~xy.

Remark Not every digraph has a kernel.

Motivation The right-to-left orientation of the edges of
a graph according to any ordering of its vertices has a
kernel: the class of color 1 in the Greedy Coloring.

Definition A digraph is kernel-perfect if every induced
subdigraph has a kernel.

Remark Every graph has an orientation that is kernel-
perfect.

Let f : V (G) → N be a function. A graph G is called
f -choosable if a proper coloring can be chosen from
any family of lists {L(x)}x∈V (G) provided |L(x)| ≥
f(x) for every x ∈ V (G).

Lemma Let D be a kernel-perfect orientation of G.
Then G is f -choosable with f(x) = 1 + d+

D(x).
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Kernel-perfect orientation of L(Kn,n)

Theorem (Galvin, 1995) χ′l(Kn,n) = χ′(Kn,n).

Proof. Trivially, n = ∆(Kn,n) ≤ χ′(Kn,n) ≤ χ′l(Kn,n)

Goal: construct kernel-perfect orientationD ofL(Kn,n)

such that ∆+(D) = n − 1 and then use Lemma
to conclude that L(Kn,n) is f -choosable with f ≡
∆+(D) + 1 = n.

Observation: In any kernel-perfect orientation D of
L(Kn,n) the clique D[{vu : u ∈ N(v)}] is transitive-
ly oriented, for every v ∈ V (Kn,n).

Claim 1. There is an orientation D of L(Kn,n) such
that ∆+(D) = n−1 and for every v ∈ V (Kn,n) the
restriction of D to {vu : u ∈ N(v)} is transitive.

Claim 2. LetD be an orientation of L(Kn,n) such that
for every v ∈ V (Kn,n) the restriction of D to {vu :

u ∈ N(v)} is transitive. Then D is kernel perfect. 2
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Orienting L(Kn,n)

Proof of Claim 1.
M = {m0, . . . ,mn−1} and W = {w0, . . . , wn−1}

E(Kn,n) = V (L(Kn,n)) = {miwj : i, j ∈ [n]}

For a ∈ N, let r(a) ∈ N be the residue of a modulo n.
(That is, r(a) ≡ a (mod n) and 0 ≤ r(a) ≤ n− 1)

Define: miwj → mi′wj if r(i+ j) > r(i′+ j)

miwj → miwj′ if r(i+ j) < r(i+ j′)

Then d+(miwj) = r(i+j)+n−1−r(i+j) = n−1
for every i, j ∈ [n]

For fixed wj ∈ W , incident edges are transitively ori-
ented from the edge mn−j−1wj (the source) towards
the edge wn−jwj (the sink), going around modulo n.

For fixed mi ∈ M , incident edges are transitively ori-
ented from the edgemiwn−i (the source) towards the
edgemiwn−i−1 (the sink), going around modulo n. 2
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Kernels through stable matchings

Interpret the transitive orientation on D[{vu : u ∈
N(v)}] as the preferences of v about its neighbors.

A kernel of D then translates to a perfect matching
I ⊆ V (D) = E(Kn,n), between M and W , such
that for every edge mw ∈ E(Kn,n) \ I, at least one
of m and w prefers its I-partner to the other.

Bonnie and Clyde is called an unstable pair if
• Bonnie and Clyde are currently not a couple,

• Bonnie prefers Clyde to her current partner, and

• Clyde prefers Bonnie to his current partner.

A perfect matching (of n women and n men) is called
a stable matching if it yields no unstable pair.

Theorem. (Gale-Shapley, 1962) Let us be given for
each of n men and n women arbitary preference ran-
kings of the members of the opposite sex. Then there
is a stable matching.
Nobel prize, 2012: Roth & Shapley “for the theory of
stable allocations and the practice of market design.”
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Concluding kernel-perfectness

Proof of Claim 2.
Given an arbitrary subset S ⊆ V (D), we define ap-
propriate preference lists, such that for a correspon-
ding stable matching I, I ∩ S is a kernel.

Man m ∈ M prefers woman w ∈ W to woman w′ ∈
W if

mw,mw′ ∈ S and mw ← mw′ or
mw ∈ S,mw′ /∈ S or
mw,mw′ /∈ S and mw ← mw′

This is a preference ranking of W for every m ∈ M ,
because D[{mw : w ∈W}] is transitive

Woman w ∈ W prefers man m ∈ M to man m′ ∈ M
if

mw,m′w ∈ S and mw ← m′w or

mw ∈ S,m′w /∈ S or

mw /∈ S,m′w /∈ S and mw ← m′w

This is a preference ranking of M for every w ∈ W ,
because D restricted to {mw : m ∈M} is transitive
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There goes your kernel

Proposition. I ∩ S is a kernel for D[S]

Proof. I is a matching⇒ I ∩ S is independent in D

Let mw ∈ S \ (I ∩ S) be arbitrary and let us find an
out-neighbor in I ∩ S.

Let mwm,mww ∈ I be the respective edges in the
stable matching.

Since mw /∈ I is not an unstable pair for the stable
matching I, either m prefers wm to w, or w prefers
mw to m.

• If m prefers wm to w, then mwm ∈ S (since
mw ∈ S), and then mw → mwm ∈ I ∩ S.

• If w prefers mw to m, then mww ∈ S (since
mw ∈ S), and then mw → mww ∈ I ∩ S.

In both cases an out-neighbor in I ∩ S was found. 2
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The proof of divorce-free society

Proposal Algorithm (Gale-Shapley, 1962)

Input. Preference ranking by each of n man and n

woman.

Iteration.
Each man proposes to the woman highest on his list
who has not previously rejected him.

IF each woman receives exactly one proposal, THEN

stop and report the resulting matching as stable.

ELSE

every woman receiving more than one proposal
rejects all of them except the one highest on her list.

Every woman receiving at least one proposal says
“maybe” to the most attractive proposal she received.

Iterate.

Theorem. The Proposal Algorithm produces a stable
matching.
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