Supplementary Exercise Sheet 2^1

Due date: NA

Exercise 1 Let R be a necklace that contains s different stones each appearing a multiple of k times. Let cuts(s, k) be the minimum number $n \in \mathbb{N}$ that one can cut R into and then partition the resultant pieces into k sets such that for $i \in [s]$ $stone_i$ appears the same number of times in each of the k sets. In class we showed that cuts(s, 2) = s. Prove the following statement:

If $cuts(s, k_1) = s(n_1 - 1)$ and $cuts(s, k_2) = s(k_2 - 1)$ then, $cuts(s, k_1k_2) = s(k_1k_2 - 1)$.

Exercise 2 Let $C_1, C_2, ..., C_k$ be a partition of the interval [0, kn] into k measurable sets such that the Lebesgue measure of C_i , denoted by $\mu(C_i)$, equals 1 for $i \in [k]$. Prove that one can partition the interval [0, kn] into k sub-intervals $I_1, ..., I_k$ and then partition the subintervals into two sets $\mathcal{I}_1, \mathcal{I}_2$ such that for $i \in [k]$ the following holds:

$$\sum_{I \in \mathcal{I}_1} \mu(I \cap C_i) = \sum_{I \in \mathcal{I}_2} \mu(I \cap C_i) = 1/2.$$

Exercise 3 For $d \ge 2$ and a set of points P in \mathbb{R}^d let U_P be the unit distance graph with vertex set P. Let $e_P = |E(U_p)|$ and define u(d, n) by

$$u(d,n) := \max_{P \subset R^d : |P|=n} e_P.$$

Show that for $d \ge 4$,

$$u(d,n) \ge \frac{1}{2} \left(1 - \frac{1}{\lfloor d/2 \rfloor} \right) n^2 + o(n^2).$$

Exercise 4 Let G be an n-vertex unit graph in \mathbb{R}^n .

- (a) Show that G does not span the complete $(\lfloor d/2 \rfloor + 1)$ -partite graph $K_{3,3,\dots,3}$
- (b) Deduce that $u(d, n) \le \frac{1}{2} \left(1 \frac{1}{\lfloor d/2 \rfloor} \right) n^2 + o(n^2).$

¹The purpose of this sheet is to practise concepts presented during the last weeks of the course