Exercise Sheet 5

Due date: 14:15, 19th November¹

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 Let G be the graph on vertex set [4] with edges 12, 13, 14, 23 (triangle with a tail). Determine ex(n, G) for every n.

Exercise 2 In this exercise you will determine the asymptotic behaviour of $ex(n, C_4)$. Let \mathbb{F}_q be the finite field of order q, where q is a prime power ². Let $\mathcal{P} = \{(x, y) : x, y \in \mathbb{F}_q\}$ be the set of points in the plane \mathbb{F}_q^2 and let

 $\mathcal{L} = \{\{(x, y) : ax + by = c\} : a, b, c \in \mathbb{F}_q \text{ and at least one of } a, b \text{ is non-zero}\}$

be the set of lines. Define a bipartite graph G_q with the two parts as \mathcal{P} and \mathcal{L} and making an edge between a point P = (x, y) and a line ℓ if P lies on ℓ , i.e., its coordinates (x, y)satisfy the equation of ℓ .

- (1) Show that the graph G_q has $2q^2 + q$ vertices and $q^3 + q^2$ edges.
- (2) Show that the graph G_q does not contain any C_4 's, and thus deduce that there exists a constant C such that for infinitely many n, we have $ex(n, C_4) \ge Cn^{3/2}$.
- (3) Conclude that $ex(n, C_4) = \Theta(n^{3/2})^3$.

Exercise 3 In this exercise you will prove the Kővari-Sós-Turán theorem.

Let G be an n-vertex $K_{s,t}$ -free graph. By counting the copies of $K_{1,s}$ in G in two ways show that $ex(n, K_{s,t}) \leq c_t n^{2-1/s}$, for some constant c_t that depends on t.

¹Please submit the exercise sheet before 14:15 on Tuesday. You can submit it in the tutor box of Michael Anastos (box number B8, in front of lecture hall 001, Arnimallee 3-5) or at the beginning of the exercise class on Tuesday or electronically at manastos@zedat.fu-berlin.de

²for example, when q is equal to a prime p you can take this to be the residues modulo p

³Hint: "there is always a prime between n and 2n." (bonus: find out who said this!)

Exercise 4 In this exercise you will show that a random bipartite graph is ε -regular with high probability, thus validating our intuitive understanding that ε -regular pairs are "random looking".

Fix some $\varepsilon > 0$ and some probability $p \in (0,1)$. Let $A = \{a_1, a_2, \ldots, a_n\}$ and $B = \{b_1, b_2, \ldots, b_n\}$ be the two parts of the random bipartite graph G(n, n, p) with bipartition $V(G) = A \cup B$, i.e. for all $1 \leq i, j \leq n$, the edge $\{a_i, b_j\}$ belongs to our random graph G = G(n, n, p) with probability p, independently of all other edges. Show that

$$\mathbb{P}[(A, B) \text{ is } \varepsilon\text{-regular}] \to 1 \text{ as } n \to \infty.$$

You may use the Chernoff bound, which in particular implies that if a random variable X is distributed as a Binomial(N, p) random variable then,

$$\mathbb{P}\left(|X - Np| \ge t\right) \le 2e^{-2t^2/N}.$$

Remark: The Central limit theorem implies that if X is distributed as a Binomial(N, p) random variable then $(X - Np)/\sqrt{N}$ is distributed as a Normal(0, p(1-p)) random variable. Hence, X is concentrated in an interval of size $\Theta(\sqrt{N})$ around Np and the probability of X being far away from Np, say by $Np \log N$ tends to zero as N tends to infinity. The Chernoff bound gives you a bound on how "fast" the later probability tends to zero. Namely it implies that the probability of X being outside the interval of size $t = t'\sqrt{N}$ around Np is bounded by $2e^{-2(t')^2}$.