Exercise Sheet 7

Due date: 14:15, 3rd December¹

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 ² Let $k \in \mathbb{N}$. Show that whenever \mathbb{N}^2 is k-colored there exists $\mathbf{z} \in \mathbb{N}^2$ and $d_1, d_2 > 0$ such that the set

$$\left\{\mathbf{z} + ad_1 \overrightarrow{e_1} + bd_2 \overrightarrow{e_2} : a, b \in \{0, 1, 2\}\right\}$$

is monochromatic.

Exercise 2 Construct a coloring of the positive integers with finitely many colors such that there is no monochromatic solution to the equation x + y = 3z.

Exercise 3 A corner in $[n]^2$ is a triple of points of the form $\{(x, y), (x+h, y), (x, y+h)\}$ for some positive x and y and some non-zero h.³ Show that for every $\varepsilon > 0$, if n is sufficiently large, then any $A \subset [n]^2$ with $|A| \ge \varepsilon n^2$ must contain a corner.

Exercise 4 For a pair of points $a, b \in \mathbb{R}^2$ define its midpoint, denoted by m(a, b), to be the point (a + b)/2. Let $\epsilon > 0$ be fixed. Show that for every *n* there exists a set $S \subset \mathbb{R}^2$ of *n* points, no 3 collinear, such that

$$|\{m(a,b): a, b \in S\}| \le C(\varepsilon)n^{1+\epsilon}.$$

¹Please submit the exercise sheet before 14:15 on Tuesday. You can submit it in the tutor box of Michael Anastos (box number B8, in front of lecture hall 001, Arnimallee 3-5) or at the beginning of the exercise class on Tuesday or electronically at manastos@zedat.fu-berlin.de

 $^{{}^{2}\}overrightarrow{e_{1}} = (1,0) \text{ and } \overrightarrow{e_{2}} = (0,1).$

³In other words, a corner is an axis-aligned isosceles right triangle. Also note that here h may be negative.

Hint to Exercise 2: thehintstartsnowp-lcolorforsomesufficientlylargeprimep.

. .