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1 Introduction

We now begin our study of the topological method in combinatorics, which dates back to 1978,
when Lovász used the Borsuk�Ulam Theorem to prove Kneser's Conjecture. This landmark proof,
which turns 40 this November, inspired many other uses of topology to prove combinatorial results,
making topology an indispensible component of the modern combinator's toolkit.

That being said, we should not take this for granted, and it is worth taking a moment to
re�ect just how remarkable it is that topology can be used in combinatorics at all.1 After all,
Wikipedia de�nes topology as being �concerned with the properties of space that are preserved
under continuous deformations."2 How, then, does one apply it to study discrete objects?

There are two ways to proceed here. One can take a combinatorial problem, embed it in a
continuous setting, and then apply a topological result, as Lovász did in his aforementioned proof.
Alternatively, one can prove a combinatorial version of a topological theorem, and then apply it
directly to the discrete problems at hand. It is this second approach we shall take in this chapter,
where we study Sperner's Lemma. Although all the statements herein may at �rst sight appear
completely discrete, a more careful look under the surface will reveal their true topological nature.3

2 Sperner's Lemma for �at-earthers

Vaguely speaking, Sperner's Lemma states that if a triangulated d-dimensional simplex is coloured
nicely, then we can always �nd a mutlicoloured simplex. In order for this to be a meaningful
mathematical statement, we need to de�ne these terms precisely, and we shall do so gradually,
restricting ourselves to the familiar two-dimensional setting in this section.

2.1 What does the lemma say?

Within the comfort of two dimensions, Sperner's Lemma concerns triangulated triangles, which
we now describe. We start with a triangle T = v1v2v3 with vertices v1, v2 and v3. We obtain a
triangulation T by dividing T into smaller triangles. Formally, we add vertices and edges in such
a fashion that each internal face has exactly three vertices on its boundaries. Moreover, any two
of the smaller triangles must either be disjoint, intersect in a vertex, or intersect in a common
edge. Below we see a couple of illustrative4 examples.

1Although this is a slippery slope � for instance, it is incredible that you are a collection of tens of trillions of
cells working together in near-perfect harmony to ensure that you can read these notes, typed by another set of tens
of trillions of cells and delivered to you via a network of billions of computers, that is mostly used by companies
with unfathomable amounts of money to harvest your personal information and send you advertisements tailored
to your interests. Pondering the miraculous nature of our very existence can quickly descend into a catatonic state
of wonder.

2Here, too, one should be a little careful � Wikipedia's de�nition of combinatorics is �an area of mathematics
primarily concerned with counting ... and certain properties of �nite structures." However, the topology quote is
perfect for my intended purposes.

3One might say that Sperner's Lemma is discreetly topological.
4Or so I hope.
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Figure 1: Two divisions of the triangle spanned by v1, v2 and v3.

In the two divisions above, the triangle T = v1v2v3 has been subdivided into smaller triangles.
However, the division on the left is not a valid triangulation, because the bottom-left face has
four vertices on its boundary � v2, a, c and f . This issue also manifests itself in the fact that the
intersection between the triangles v2af and abc, namely the edge ac, is an edge of abc but not an
edge of v2af . This issue is resolved in the division on the right by further dividing v2af into two
further triangles, v2ac and v2cf . This division of T is indeed a triangulation.

In Sperner's Lemma, we �colour" the vertices of a triangulation T with the �colours" 1, 2 and
3. The goal is to �nd a multicoloured triangle in the subdivision, which is a triangular face whose
vertices all receive di�erent colours. This is clearly not always possible � for instance, if we colour
each vertex 1, we cannot hope to �nd a multicoloured triangle. Indeed, the lemma only applies
to the so-called Sperner colourings, where we impose restrictions on the colours of vertices on the
boundary of T :

- For 1 ≤ i ≤ 3, the vertex vi is coloured i.

- For 1 ≤ i < j ≤ 3, any vertex on the side of T between vi and vj is coloured either i or j.

Figure 2: A triangulation, and the colours permitted on the boundary vertices.

Provided these conditions are satis�ed, Sperner's Lemma asserts that we will always �nd a
small multicoloured triangle.

Theorem 2.1 (Sperner's Lemma in two dimensions). Let T = v1v2v3 be a triangle, and let T be
a triangulation of T . There is then a multicoloured triangle in every Sperner colouring of T .
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Before we don our serious-mathematician-hats and discuss a proof of this theorem, let us
observe that this is quite a remarkable statement, as we are placing no restrictions whatsoever
on the colours of the interior vertices. Indeed, had you not encountered this statement within a
theorem environment in these course notes, but instead imagined that it was whispered to you by
a marmoset clutching a piece of bread, then you might well have thought it impossible that such
a statement could be true.

Figure 3: A marmoset, probably contemplating how Sperner's Lemma could possibly be true.

In this case, faced with such doubts, you would surely spend some time trying to �nd a
counterexample.5 Let us now save you that time by providing below a couple of Sperner colourings
of a triangulation, in which we certainly do �nd multicoloured triangles (shaded).

Figure 4: Some evidence in favour of Sperner's Lemma.

Naturally, this �evidence" is not intended to win over your mathematical brains � after all,
there are in�nitely many possible triangulations, with most admitting many di�erent Sperner
colourings, so what can we possibly learn from two small examples? � but rather to sway your
mathematical hearts.6 Now that you are beginning to believe Sperner's Lemma might possibly be
true, we shall proceed with a proof to show that it is.

5To be fair, any mathematical musings with monkeys are likely to be the result of a fever dream, and you could
be forgiven for �rst tending to your temperature before colouring lots of triangulations.

6A cynic might claim the only purpose of this page was to shoehorn a picture of a marmoset into these notes.
We shall not dignify these accusations with a response.
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2.2 A two-dimensional proof

The proof of Theorem 2.1 is the kind of proof students dream of � short,7 elegant, and memorable.

Proof of Theorem 2.1. Given the triangulation T of the triangle T = v1v2v3, �x a Sperner colour-
ing ϕ : V (T ) → {1, 2, 3} of the vertices of the triangulation. We now build a graph G in the
following fashion:

- We create a vertex xF ∈ V (G) for each triangular face F in T . We add one extra vertex xT
representing the external face (that is, everything outside T ).

- Two vertices xF and xF ′ are adjacent in G if and only if F and F ′ share an edge, one of
whose vertices is coloured 1 and the other coloured 2.

Figure 5: A Sperner colouring of a triangulation (in grey) and the associated graph (in black).

Let us examine the degrees of the vertices in G. By construction, the degree of a vertex xF
(or xT ) is the number of edges on the boundary of F (or on the boundary of T ) whose endpoints
are coloured 1 and 2.

We start with the degree of xT . What can we say about the number of edges8 on the boundary
of T whose endpoints are coloured 1 and 2? The second property of the Sperner colourings implies
that the only place we can �nd such edges in T is between v1 and v2. Let u1, u2, . . . , ut be the
vertices appearing on this side of T , starting from u1 = v1 and ending at ut = v2.

Now consider the sequence of colours (ϕ(ui))
t
i=1 of these vertices. Again, by the second property

of Sperner colourings, we must have ϕ(ui) ∈ {1, 2} for each i. Every time we have ϕ(ui+1) 6=
ϕ(ui), we have an edge {ui, ui+1} on the boundary of T whose vertices get the colours 1 and
2, corresponding to an edge containing xT in G. By the �rst property of a Sperner colouring,
ϕ(u1) = ϕ(v1) = 1 and ϕ(ut) = ϕ(v2) = 2. Thus the sequence must change an odd number of
times, meaning that the degree of xT is odd.

From the Handshake Lemma, we know that there must be an even number of vertices of odd
degree in a graph G. Since xT has odd degree, it follows that there must be another vertex, which
must be of the form xF for some internal face F = uvw, of odd degree.

Since xF has positive degree in G, it must have an edge with the colours 1 and 2. Without
loss of generality, suppose ϕ(u) = 1 and ϕ(v) = 2. If ϕ(w) ∈ {1, 2}, then there would be precisely
one other edge of F receiving both colours 1 and 2, and so xF would have degree two in G. Hence
we must have ϕ(w) = 3, and so F must be a multicoloured triangle, as required.

We remark that this proof actually shows something stronger � any Sperner colouring of
a triangulation of a triangle contains an odd9 number of multicoloured triangles. Indeed, the

7So much so that one could question whether the result can really be of any use, and yet here we are, waxing
lyrical for pages on end.

8Recall that in making the triangulation T , we could add arbitrarily many vertices on the boundary of T , so
this number of edges can be unbounded.

9And, in particular, positive.
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Handshake Lemma shows that there are an odd number of internal vertices of odd degree, and in
the last paragraph we proved that any such vertex corresponds to a multicoloured triangle.

2.3 The game of Hex

We round up this section by showing that even this two-dimensional version of Sperner's Lemma
has some remarkable applications. Our example of choice is the game of Hex, which has nothing
to do with witchcraft, but everything to do with the hexagonal lattice.10 We �rst give a quick
overview of the rules.11

The game is played on an n×n hexagonal grid, with two players, Joker and Nyssa,12 alternately
claiming empty hexagonal cells by inscribing their initials in them, continuing until all cells in the
grid have been �lled. Joker wins if he has claimed a path of cells from the left end of the board
to the right, while Nyssa wins if she has a path from the top of the grid to the bottom.13 An
example with n = 5 is shown below, with Nyssa's winning path highlighted.

Figure 6: A 5× 5 hexagonal lattice, and the board at the end of a game.

Before we go any further, we would be remiss if we did not comment on the history of this
game. Although �rst invented by Piet Hein in 1942, it was independently introduced by John Nash
in 1948.14 John Nash was a remarkable academic, winning both the Nobel Prize for Economics for
his fundamental work in game theory15 and the Abel Prize for his research on nonlinear partial
di�erential equations.16 That kind of résumé is one that even Hollywood could not ignore, with
Russell Crowe depicting the eponymous Nash in A Beautiful Mind.17

10When it comes to board games, humans tend to prefer a square grid, but I imagine bees lounging in their
honeycomb would play on hexagons.

11In humanity's golden age, this game would have required no introduction, but with the advent of reality TV
and Snapchat, nobler pastimes such as Hex have regrettably fallen by the wayside.

12I had originally planned on naming the players John and Nash, for reasons that will be apparent in one
paragraph's time. However, I then realised that this might cause confusion between John and Nash, the players,
and John Nash, the mathematician after whom they were named. As my illustrations were already drawn, I was
locked into my choice of initials, and was preparing this during a dark night, so ... .

13Usually one would end the game as soon as a winning path is completed, but the analysis is more straightforward
if we assume all the cells have been claimed. This does not a�ect the outcome of the game � a fun exercise (with
many solutions) is to show that it is impossible for both players to create winning paths.

14The name �Hex" comes from the version of game marketed by the Parker Brothers in 1952. Hein called the
game either �Con-tac-tix" or �Polygon," while Nash's version was apparently called �John" by his classmates at
Princeton, since it could be played on the hexagonal tiles found in bathrooms. With such clever wordplay, it is no
wonder that these bright young minds were snapped up by Princeton!

15Those familiar with the subject will no doubt know of Nash already, for he lends his name to Nash equilibria.
16At time of press, he is the only person to have received both of these prizes.
17This �lm's success may well have a spawned a series of �lms about mathematicians � we have recently been

treated to The Imitation Game (Turing), The Man Who Knew In�nity (Ramanujan) and The Theory of Everything
(Hawking).
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As is perhaps be�tting one of the fathers of Game Theory, Nash appears to have had quite the
a�nity for board games.18 Indeed, in a much-quoted scene from the movie,19 Nash is depicted
playing Go against a fellow Princeton student.20 At the end of the game, he says (spoilers ahead)

�You should not have won. I had the �rst move, my play was perfect ... the game
is �awed."

We shall now prove that Hex is a �awless game � with perfect play, Joker will always win.
Some standard game-theoretic arguments apply, which we brie�y sketch here.21 Since this is a
�nite game of perfect information, either one of the players can guarantee a win, or both players
can force a draw. Moreover, by strategy stealing, Nyssa (the second player) cannot have a winning
strategy. Indeed, suppose for contradiction that she does. In this case, Joker can make an arbitrary
�rst move (because an extra cell can never hurt), and then pretend to be second player, using
Nyssa's strategy. If Nyssa also uses her winning strategy, they should both win, but this is not
possible. Hence, either Joker has a winning strategy, or both players can force a draw. The
following corollary of Sperner's Lemma shows that every game of Hex has a winner, and so it
follows that Joker should always win. Do note, though, that we have only proved the existence
of a winning strategy for Joker; we have not constructed one, and indeed, an explicit winning
strategy is unknown (except for small values of n).22

Corollary 2.2 (The Hex Theorem). Every game of Hex has a winner.

Proof. We start by building a graph Γn out of the n×n hexagonal grid. Replace each hexagon H
with a vertex vH , and put an edge between vH and v′H precisely when H and H ′ intersect in an
edge. We then add some external vertices: v1 on the left, v2 on the top, v3 on the right, and v4

on the bottom. Each of the external vertices is adjacent to the vertices of all the hexagonal faces
on the corresponding edge of the grid.

Figure 7: The graph Γ5.

Now suppose for contradiction that a game of Hex is played without Joker creating a left-right
path or Nyssa creating a top-bottom path. We then label (not colour) each vertex of Γn with
either a `J' or an `N' as follows. The vertices v1 and v3 are labelled J , while v2 and v4 are labelled
N . Every internal vertex vH is labelled the same way as the corresponding hexagon H in the grid
� Joker's cells are labelled J and Nyssa's cells are labelled N .

18Aside from Hex, he also created So Long Sucker (warning: profanity).
19https://www.youtube.com/watch?v=GmlSSSN7C78
20Hollywood may not be a bastion of factual accuracy, but as this is just to provide some context for our next

result, I am happy to take historical liberties.
21For a more thorough handling of this topic, see next year's Algorithmic Combinatorics course.
22This explains how Nyssa could win our example above, and why the game is still the most fun you can have

on a sunny afternoon.
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Given this labelling, we now de�ne a colouring ϕ : V (Γn)→ {1, 2, 3}:

ϕ(v) =


1 if v has label J and there is a path from v to v1, on which all labels are J

2 if v has label N and there is a path from v to v2, on which all labels are N

3 otherwise

.

Figure 8: The labelling and colouring of Γ5 corresponding to a game from Figure 2.3.

We now wish to apply Theorem 2.1 to Γn and ϕ. However, Sperner's Lemma applies to
triangulations of triangles, while Γn is a triangulation of the square S = v1v2v3v4. We can rectify
the situation by �twisting" Γn, moving v4 upwards until it is in line with v1 and v3. In this fashion,
we can view Γn as a triangulation of T = v1v2v3.

Figure 9: Obtaining a triangulation of a triangle from Γ5.

Of course, topologically speaking, there is no di�erence between a square and a triangle.23

However, we need to be careful about our choice of vertices here, as we need to ensure ϕ is a
Sperner colouring.

For the �rst property, we trivially have ϕ(v1) = 1 and ϕ(v2) = 2. Since the label of v3 is
J , its colour can only be 1 or 3. If ϕ(v3) = 1, then Joker must have claimed a left-right path,
contradicting our assumption that there is no winner. Hence, we must have ϕ(v3) = 3. By a
similar argument, ϕ(v4) = 3.

As for the second property, we consider the three sides of T in turn. Let u1,2 be the vertex
between v1 and v2. Since it is adjacent to both v1 and v2, it cannot receive the colour 3, regardless
of how it is labelled. Hence ϕ(u1,2) ∈ {1, 2}. If we let u2,3 be the vertex between v2 and v3, observe
that it corresponds to a hexagon on the right edge of the grid. If it had colour 1, that would imply
Joker had built a winning path, contradicting our assumption. Hence ϕ(u2,3) ∈ {2, 3}. Finally, we
turn our attention to the side between v1 and v3. We have already shown ϕ(v4) = 3. The other

23People often make fun of topologists, saying that a topologist is someone who drinks co�ee out of a doughnut.
While that may seem like a harmless joke, discrimination against topologists begins from a very young age.
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two vertices on this side correspond to hexagons on the bottom edge of the grid, and since Nyssa
has not won the game, they cannot have the colour 2. Thus ϕ(u) ∈ {1, 3} for these two vertices
as well.

Thus ϕ is truly a Sperner colouring of Γn, and by Theorem 2.1, there must be a multicoloured
triangle, but we will �nish the proof by showing this is impossible. Let the vertices of this triangle
be u1, u2 and u3, and, without loss of generality, let us assume ϕ(ui) = i for 1 ≤ i ≤ 3. Since
ϕ(u1) = 1, u1 must have the label J , and have a J-labelled path back to v1. Similarly, u2 has label
N , and an N -labelled path back to v2. If u3 had label J , then we could append it to the path of
u1, obtaining a J-labelled path from u3 to v1. However, we would then have ϕ(u3) = 1. Thus u3

must have label N , but then we can append it to the path of u2, which would imply ϕ(u3) = 2.
Hence there cannot be a multicoloured triangle, proving the impossibility of a draw.

3 Sperner's Lemma in higher dimensions

It is now time to put on your dD glasses, because we are about to see Sperner's Lemma in
its full d-dimensional beauty. Fortunately, with all the work we have already invested in the
two-dimensional setting, our main task will be to understand what we mean by triangles and
triangulations in higher dimensions.

3.1 De�nitions in HD

The generalisation of the triangle is, naturally, the d-simplex. The faces of a simplex will also be
of importance, and so we de�ne these terms here.

De�nition 3.1 (d-simplex). A d-simplex T is the convex hull of d + 1 points v1, v2, . . . , vd+1 ∈
Rd that are a�nely independent.24 The points vi are the vertices of T , and we write V (T ) =
{v1, v2, . . . , vd+1}.

Given a subset I ⊆ V (T ) of size k + 1, the k-simplex spanned by {vi : i ∈ I} is said to be a
(k-)face of T , denoted FI . A facet is a (d− 1)-face.

We also required the notion of triangulations, which consisted of decomposing a triangle into
smaller triangles. The corresponding object in higher dimensions is a simplicial subdivision, which
is a well-behaved decomposition of a simplex into smaller simplices.

De�nition 3.2 (Simplicial subdivision). A simplicial subdivision of a d-simplex T is a �nite set
of d-simplices T = {S1, S2, . . . , Sm} such that T = ∪mi=1Si, and, for every 1 ≤ i 6= j ≤ m, Si ∩ Sj

is either empty or a common face of both Si and Sj. The vertices of a subdivision are the vertices
of all its d-simplices; that is, V (T ) = ∪mi=1V (Si).

Finally, just as in two-dimensions, we will be interested in colourings of the vertices of our
subdivisions, wiith restrictions placed on the vertices of the boundary.

De�nition 3.3 (Sperner colourings). Given a simplicial subdivision T of a d-simplex T , where
V (T ) = {v1, v2, . . . , vd+1}, a Sperner colouring is a map ϕ : V (T ) → [d+ 1], such that whenever
a vertex u ∈ V (T ) lies on the face FI of T for some subset I ⊆ [d+ 1], we have ϕ(u) ∈ I.

A simplex Si ∈ T is a multicoloured simplex if all d+ 1 colours appear on the vertices of Si.

Note that this implies, in particular, that the vertices of the original simplex T all receive
distinct colours: since vi ∈ F{i}, we must have ϕ(vi) = i. Furthermore, any vertex on the edge
between vi and vj is coloured either i or j, any vertex on the triangle spanned by vi, vj and vk is
coloured either i, j or k, and so on.

24The points are said to be a�nely independent if the vectors {vi − vd+1 : 1 ≤ i ≤ d} are linearly independent
in R.
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3.2 The lemma in full

Wtih these de�nitions in place, we can now state Sperner's Lemma25 in full.

Theorem 3.4 (Sperner's Lemma). Every Sperner colouring of a simplicial subdivision of a d-
simplex contains a multicoloured simplex.

Observe that Theorem 2.1 is precisely Theorem 3.4 in the case d = 2. Some re�ection on our
previous proof reveals that the very same argument, coupled with induction on the dimension,
will su�ce to prove the general case as well.26

Proof. Using induction on d, we will in fact prove a little more: for all d ≥ 1, every Sperner
colouring of a simplicial subdivision of a d-simplex contains an odd number of multicoloured
simplices (and, in particular, at least one).

For the base case, where d = 1, observe that a 1-simplex is simply a line segment with endpoints
v1 and v2, and a simplicial subdivision consists of a sequence of vertices (u1, u2, . . . , ut), where
u1 = v1 and ut = v2. We must have ϕ(ui) ∈ {1, 2} for each i, with ϕ(u1) = 1 and ϕ(ut) = 2.
Moreover, a pair (ui, ui+1) with ϕ(ui) 6= ϕ(u2) corresponds to a multicoloured simplex. Since the
�nal colour is di�erent from the �rst colour, the sequence of colours must switch an odd number
of times, giving us an odd number of multicoloured simplices.

For the induction step, let d ≥ 2, and assume the theorem is true for (d− 1)-simplices. Let T
be a d-simplex with vertices V (T ) = {v1, v2, . . . , vd+1}, T = {S1, . . . , Sm} a simplicial subdivision
of T , and ϕ : V (T )→ [d+ 1] a Sperner colouring of T .

We again build a graph G. As vertices we take V (G) = {x0, x1, . . . , xm}, where x0 corresponds
to the (d − 1)-face F[d] of T , and for 1 ≤ i ≤ m, xi represents the simplex Si in the subdivision.
For 0 ≤ i < j ≤ m, the vertices xi and xj are adjacent in G if the corresponding simplices intersect
in a (d− 1)-simplex whose vertices are coloured with all colours in [d].

Now observe that the simplicial subdivision T of T restricts to a (d−1)-dimensional simplicial
subdivision T ′ when restricted to F[d]. Moreover, it is easy to see that ϕ′ = ϕ|V (T ′) is a Sperner
colouring of this lower-dimensional subdivision, only using the colours in [d]. By the induction
hypothesis, T ′ contains an odd number of multicoloured simplices, each of which corresponds to
an edge in G containing x0. Hence x0 has odd degree.

By the handshake lemma, the number of the remaining vertices in G with odd degree must
be odd. Now consider a vertex xi, 1 ≤ i ≤ m, of positive degree. The corresponding simplex
Si must therefore have a facet with the colours {1, 2, . . . , d}. Say the vertices on this facet are
{u1, u2, . . . , ud}, where ϕ(uj) = j for 1 ≤ j ≤ d. Let u be the unique vertex of Si not appearing on
this facet. If ϕ(u) = r ∈ {1, 2, . . . , d}, then there is precisely one other facet of Si with the colours
{1, 2, . . . , d}; namely, the one spanned by {u1, u2, . . . , ur−1, u, ur+1, . . . , ud}. Hence, in this case,
Si would have even degree.

Therefore, if xi has odd degree, we must have ϕ(u) = d+1, and so Si is a multicoloured simplex.
We therefore have an odd number of multicoloured simplices in T , completing the proof.

3.3 Where is the topology?

Now that we have seen Sperner's Lemma and its proof, you may be left wondering where the
topology, which we made such a fuss about in the introduction, actually is. After all, the proof is
purely combinatorial27 � we build a graph, and look at the degrees of this graph, using nothing
more than the Handshake Lemma.

Of course, the topology lies within the notions of simplicial subdivisions and Sperner colour-
ings. The restrictions placed on the colouring depend on which faces the vertices lie, and this is

25Not to be confused with Sperner's Theorem, which we encountered earlier. One way to recall the di�erence is
that Sperner's Lemma is about coLouring simpLices, while Sperner's Theorem is about anTichains of seTs.

26Should we so desire, we could use Theorem 2.1 as the base case. However, to give a self-contained proof, we
will start with d = 1, and reprove the two-dimensional result.

27Of course, one could argue over where the boundary between topology and combinatorics lies. Some people
have said that combinatorics is nothing more than the slums of topology. We do not like some people.
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information is, in some sense, topological. Furthermore, in applications of Theorem 3.4, such as
those we will see later, one often needs a suitable simplicial subdivision, which can be obtained
through topological means.

However, the inherent topological nature of Theorem 3.4 is perhaps re�ected in the fact that
it is equivalent to the well-known Brouwer Fixed Point Theorem.28

Theorem 3.5 (Brouwer Fixed Point Theorem). Let Bd be the d-dimensional ball. Any continuous
map f : Bd → Bd has a �xed point.

Apart from being a beautiful result, this theorem has some signi�cant real-world consequences.
For instance, the case d = 3 implies that after a topologist has stirred her morning doughnut of
co�ee, there is some atom that returns to its initial location.

4 Independent transversals

We shall now discuss a few applications of Theorem 3.4, so as to assure you that the generalisation
to higher dimensions was worthwhile. The �rst of these concerns independent transversals and, to
get you even more excited for the topic, we will open with some motivation from the real world.

4.1 Forming committees

There is a university29 where every decision � the hiring of a new professor, the setting of degree
requirements, the choice of font for o�cial communication � must be made by a committee,
tasked with ensuring that the decision made is fair, unbiased, and in the best interests of the
university.

We require two things of these committees: that they be representative, containing one member
from each department, and that they be able to make decisions quickly. Unfortunately, these two
goals may well be in con�ict with each other. For instance, if everyone in the mathematics
department were to hate everyone in the physics department,30 then any representative commitee
would contain a pair of enemies, and it would be di�cult to get them to agree on anytihng.

Fortunately, though, the department members are too busy with their work to hate many other
faculty members. If nobody hates many other people, and the departments are large, we might
hope to be able to form a committee whose members all get along with each other. We now seek
to determine whether this is actually true, and to see what `many' and `large' need to mean.

4.2 A graphic reformulation

To make the problem more precise, we shall, of course, restate it in graph-theoretic terms. We
build a graph G, with one vertex for each member of the university faculty. The vertices of this
graph are partitioned into the di�erent departments, so we have V (G) = V1∪̇V2∪̇ . . . ∪̇Vr, with
each Vi being the faculty members of a particular department.31 A representative committee is a
choice of one vertex from each part Vi, 1 ≤ i ≤ r, otherwise known as a transversal.

In order to keep track of which pairs of dons hate each other, and should not be selected together
to serve in a committee, we put an edge for every pair of vertices representing incompatible people.

28Showing the equivalence of Theorem 3.4 and Theorem 3.5 is a rewarding exercise. Bonus fun: the Hex Theorem
(Corollary 2.2) is also equivalent to both of these results.

29Which, for legal reasons, shall not be named in these notes.
30Which is not unthinkable: the mathematicians may well be jealous of all the cool toys the physicists get to play

with in their labs, while physicists could resent mathematicians for not even being able to solve simple di�erential
equations describing how viscous �uids �ow.

31Naturally, a committee had to be formed to decide how the indices would be assigned to the departments.
However, as this was a crucial step in solving the problem of making e�cient committees, this decision took a long
time to make. Eventually, following a bitter struggle that saw no fewer than four professors resigning in disgust,
the department of underwater basket weaving won the right to be V1. The department of mathematics was stuck
with Vr, primarily because their representative was preoccupied with doodling graphs on pieces of scrap paper
throughout the meetings, and never spoke a word.
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We thus want to ensure that the transversal we choose does not span any edges; in other words,
it should be an independent set.

De�nition 4.1 (Independent transversal). Let G be an r-partite graph with parts V1, V2, . . . , Vr.
An independent transversal is a set S ⊆ V (G) such that

(i) S is an independent set, and

(ii) |S ∩ Vi| = 1 for all 1 ≤ i ≤ r.

Our goal is to �nd conditions on the graph G that imply the existence of an independent
transversal. The �rst thing we might think to require is that the parts be large, as this gives us
more freedom to avoid edges when selecting a vertex from each part. For an extreme example,
if we had two parts of size one, and those two vertices were adjacent, it would be impossible to
build an independent transversal.

However, even large part sizes might not be enough if we have vertices of high degree as well.
Sticking with the extreme examples, if our graph G was complete, we would certainly not �nd
an independent transversal. We shall therefore also bound the maximum degree of the graph.
Putting these requirements together gives rise to the extremal problem we will be solving.

Question 4.2. Given natural numbers ∆ and r, what is the minimum p = p(∆, r) such that
every r-partite graph with parts of size at least p and maximum degree at most ∆ contains an
independent transversal?

At �rst sight it is not clear that p(∆, r) should exist at all � while making the parts larger
provides more freedom of choice, it also provides more opportunities to place edges that destroy
independent transversals. However, a natural greedy algorithm shows that p(∆, r) is indeed �nite.

Claim 4.3. For all ∆ and r, we have p(∆, r) ≤ (r − 1)∆ + 1.

Proof. We build an independent transversal greedily: starting from V1 and working up to Vr, we
choose a vertex vi ∈ Vi that is not adjacent to the vertices {vj : 1 ≤ j < i} chosen previously. At
every step, we have already chosen at most r−1 vertices, each of which has at most ∆ neighbours
in the current part. Thus, as long as we have at least (r − 1)∆ + 1 vertices to choose from, there
is always a valid choice, allowing us to complete an independent transversal.

We now have an upper bound, though it remains to be seen how good it is. What kind of
lower bound can we give for p(∆, r)? We earlier noted that if the graph G was complete, we
would not be able to form an independent transversal. For a less wasteful obstruction, if we had a
complete bipartite graph Kp,p between two parts, that would be enough to prevent an independent
transversal. Hence, if p ≤ ∆, we cannot guarantee the existence of an independent transversal.
This leaves us with the bounds ∆ + 1 ≤ p(∆, r) ≤ (r− 1)∆ + 1 whenever r ≥ 2.32 Which is closer
to the truth?

4.3 The chromatic number

Before answering that question, we shall describe an important application33 of independent
transversals, which will provide us with an alternative construction for the lower bound p(∆, r).

Recall that the chromatic number χ(H) of a graph H is the minimum p such that we can
�nd a colouring c : V (H) → [p] such that whenever {h, h′} ∈ E(H), we have c(h) 6= c(h′). The
problem of �nding a proper colouring of a graph is a fundamental one in combinatorics, and it can
be naturally reduced to �nding an independent transversal in a graph, showing the importance of
our problem.34

32Trivially, p(∆, 1) = 1.
33That is, something mathematical, not something from the real world.
34In terms of complexity, deciding whether a graph is p-colourable for any p ≥ 3 is NP-complete (i.e. hard), and

therefore so is the problem of �nding an independent transversal in a graph.
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We build a graph G with vertices V (G) = {(h, i) : h ∈ V (H), i ∈ [p]}. The vertex (h, i) in
G represents colouring the vertex h ∈ H with colour i ∈ [p]. Hence, if we make vertex parts
Vh = {(h, i) : i ∈ [p]} for each h ∈ V (H), a transversal corresponds to a colouring of the vertices
in H.

However, we need to �nd a proper colouring. By de�ning edges of G appropriately, we shall
ensure that proper colourings of H correspond to independent transversals in G. To this end, let
E(G) = {{(h, i), (h′, i)} : {h, h′} ∈ E(H), i ∈ [p]}; that is, two vertices in G are adjacent if they
correspond to the same colour and a pair of adjacent vertices in H. We have ∆(G) = ∆(H),
since G is nothing more than p disjoint copies of H. Furthermore, it is easy to see that a proper
colouring of H is precisely an independent transversal of G.

Hence, we must have p ≥ χ(H) in order for G to have an independent transversal. If we take
H = K∆+1, we have χ(H) = ∆(H) + 1, and so it follows that p(∆,∆ + 1) ≥ ∆ + 1. Since p(∆, r)
is monotone non-decreasing in r,35 we have a di�erent construction to show p(∆, r) ≥ ∆ + 1 for
all r ≥ ∆ + 1.

4.4 A sharp lower bound

Although we have so far only seen the lower bound p(∆, r) ≥ ∆ + 1, some sporadic examples were
found that showed, for certain values of ∆, one could have p(∆, r) ≥ 2∆. These constructions
seemed to be worst possible cases, leading Bollobás, Erd®s and Szemerédi to make the following
conjecture in 1975.

Conjecture 4.4. For all ∆ and r, p(∆, r) ≤ 2∆.

As we shall see in this section, not only is this conjecture correct, but it was the correct
conjecture to make � years later, in 2006, Szabó and Tardos provided a superior construction to
the ones we have seen thus far, proving that p(∆, r) ≥ 2∆ for all ∆ and r ≥ 2∆.36

Theorem 4.5. For all ∆ and r ≥ 2∆, p(∆, r) ≥ 2∆.

Before going through the details of the construction, let us quickly sketch the underlying idea.
We earlier showed p(∆, r) ≥ ∆ + 1 by considering the complete bipartite graph K∆,∆. Here, in a
transversal, one is forced to take one vertex from each part of the graph, thus inducing an edge.

Our goal is to show the existence of r-partite graphs with parts of size 2∆ − 1 that do not
admit an independent transversal. The idea is to take disjoint union of several copies of K∆,∆.
We then have to cleverly divide the vertices into parts in such a way that if one were to try to
construct an independent transversal, one would eventually be forced to choose one vertex from
each part of a copy of K∆,∆, thus spanning an edge. We now make this idea precise.

Proof. By monotonicity of p(∆, r) in r, it is enough to show the theorem for r = 2∆, as then
p(∆, r) ≥ p(∆, 2∆) ≥ 2∆ for all r ≥ 2∆.

For −(∆ − 1) ≤ i ≤ ∆ − 1, let Gi be a copy of K∆,∆ with vertex classes labelled Ai and
Bi. We take our graph G to be the disjoint union of the graphs Gi, which clearly has maximum
degree ∆. We shall now divide the vertices of G into r parts of size 2∆− 1 in such a way that any
independent transversal would be forced to contain one vertex from A0 and one from B0, giving
an edge and, with it, ending the proof.

For 0 ≤ i ≤ ∆− 2, �x an arbitrary vertex ai ∈ Ai. We de�ne the following parts:

(i) For 1 ≤ i ≤ ∆− 1, let Vi = (Ai−1 \ {ai−1}) ∪Bi.

(ii) Let V∆ = A∆−1 ∪ {ai : 0 ≤ i ≤ ∆− 2}.
35For r′ > r, we can always extend an r-partite graph to an r′-partite graph by adding r′ − r parts of p vertices,

without adding any edges. Any independent transversal of the larger graph contains an independent transversal of
the original one.

36This is, in fact, a special case of the Szabó�Tardos result, who gave the best-possible lower bound on p(∆, r)
for smaller values of r as well.
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Observe that this gives ∆ parts which partition A0 ∪ (∪i≥1V (Gi)).

Claim 4.6. Any independent transversal of the parts V1, V2, . . . , V∆ must contain a vertex of A0.

Proof. Let T be an independent transversal of V1, V2, . . . , V∆, and for 1 ≤ i ≤ ∆, let vi ∈ Vi be
the vertex of Vi contained in T . We start by considering v∆. If v∆ = a0, we are done. Hence we
may assume v∆ ∈ Ai for some i ≥ 1.

Now consider vi ∈ Vi ⊂ Ai−1 ∪Bi. Since T is independent, we cannot have vi ∈ Ai, as then it
would be adjacent to v∆. Thus vi ∈ Ai−1.

By an analogous argument, we can deduce that vi−1 ∈ Ai−2, and so on, until we deduce that
v1 ∈ A0, proving the claim.

We have thus partitioned half of the vertices of G into ∆ parts, and ensured that any inde-
pendent transversal contains a vertex from A0. To complete the proof, we partition the remaining
vertices symmetrically, negating indices and exchange the roles of the Bj and Aj .

More precisely, for −(∆− 2) ≤ j ≤ 0, �x an arbitrary vertex bj ∈ Bj . We de�ne the parts:

(i) For −(∆− 1) ≤ j ≤ −1, let Vj = (Bj+1 \ {bj+1}) ∪Aj .

(ii) Let V−∆ = B−(∆−1) ∪ {bj : −(∆− 2) ≤ j ≤ 0}.

Figure 10: The graph G and its partition when ∆ = 4.

The parts V−∆, V−(∆−1), . . . , V−1 partition B0 ∪ (∪j≤−1V (Gj)), and, with essentially the same
proof as before, we have the following claim.

Claim 4.7. Any independent transversal of the parts V−∆, V−(∆−1), . . . , V−1 must contain a vertex
of B0.

To conclude, we view G as a (2∆)-partite graph with parts V−∆, . . . , V−2, V−1, V1, V2, . . . , V∆,
each having size 2∆ − 1. If this partition were to admit an independent transversal, then by
Claims 4.6 and 4.7, this transversal would contain vertices from both A0 and B0, which would
induce an edge. Hence there is no independent transversal of G, and so p(∆, 2∆) ≥ 2∆.

4.5 The upper bound

Theorem 4.5 shows that the upper bound of Conjecture 4.4, if true, would be best possible. As it
turns out, Haxell had proven the conjecture a few years earlier in 2001. Together with the previous
lower bound, this proves p(∆, r) = 2∆ for all r ≥ 2∆.

Theorem 4.8. If G is an r-partite graph with maximum degree ∆ and parts of size at least 2∆,
then G contains an independent transversal.
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Although Haxell's original proof was algorithmic, she later provided an elegant topological
proof using Sperner's Lemma, and it is this second proof that we shall present. The idea is to
build a simplicial subdivision of an (r − 1)-simplex, together with a Sperner colouring, in such a
way that a multicoloured simplex corresponds to an independent transversal. To that end, the
following de�nitions will be useful.

De�nition 4.9 (Simplicial boundaries). Given a d-simplex T , its boundary ∂T is the union of
its facets. Given a simplicial subdivision T of T , we denote by ∂T the induced subdivision of ∂T
into (d− 1)-simplices.

Note that we lose information when we only consider the simplicial subdivision of the boundary
� many di�erent subdivisions could have the same boundary subdivision. In particular, there is
a standard way to obtain a subdivision from a subdivided boundary: create a new vertex in the
interior of T , and add it to each of the (d− 1)-simplices in T ′.

De�nition 4.10 (Lifted subdivision). Give a d-simplex T and a subdivision T ′ = {S′1, S′2, . . . , S′m}
of the boundary ∂T , the lifted subdivision L(T ′) = {S1, S2, . . . , Sm} is a subdivision of T , where
for some x0 ∈ T \ ∂T , V (L(T ′)) = V (T ′) ∪ {x0}, and V (Si) = V (S′i) ∪ {x0} for each 1 ≤ i ≤ m.

Figure 11: A subdivision T of T ; ∂T subdivides the boundary ∂T ; the lifted subdivision L(∂T ).

We shall then need to label the vertices of a subdivision T with vertices from our graph G,
with the hope of eventually �nding independent transversals. Hence our labelling scheme will
have to take into account which parts the vertices are coming from, and which pairs of vertices
are adjacent. This gives rise to the following de�nition.

De�nition 4.11 (Independent labelling). Suppose we have a (d+1)-partite graph H with V (H) =
V1∪̇V2∪̇ . . . ∪̇Vd+1. Let T be a d-simplex with vertices V (T ) = {t1, t2, . . . , td+1}, and let T b a
subdivision of either T or the boundary ∂T . An independent labelling is a map L : V (T )→ V (H)
such that:

(i) for every I ⊂ [d+ 1], if a vertex u ∈ V (T ) lies on the face FI of T , then L(u) ∈ ∪i∈IVi.

(ii) if a pair of vertices u1, u2 ∈ V (T ) are adjacent in the subdivision,37 then their labels
L(u1), L(u2) ∈ V (H) are not adjacent in the graph H.38

The following claim shows that, given a subdivision of the boundary of a simplex, together
with an independent labelling of the subdivision, we can extend the subdivision and labelling to
cover the whole simplex without changing anything on the boundary.

Claim 4.12. Let H be a (d + 1)-partite graph of maximum degree ∆ and parts of size at least
2∆. Let T be a d-simplex, T ′ a subdivision of the boundary ∂T , and L′ : V (T ′) → V (H) an
independent labelling of the vertices in T ′. Then there exists a simplicial subdivision T of T and
an independent labelling L : V (T ) → V (H) such that ∂T = T ′ and L(u) = L′(u) for all vertices
u ∈ V (T ′).

37That is, they appear together in a common simplex S ∈ T .
38Note that we allow adjacent vertices in T to receive the same label, as a vertex in H is not adjacent to itself.
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We shall prove this claim in due course, but let us �rst see how it implies the theorem.

Proof of Theorem 4.8. Let G have parts V1∪̇V2∪̇ . . . ∪̇Vr, with each part of size at least 2∆, where
∆ is the maximum degree of G. We seek an independent transversal of G.

We will show the existence of a simplicial subdivision T of an (r − 1)-simplex T , together
with an independent labelling L : V (T ) → V (G). Given such a labelling, we obtain a colouring
ϕ : V (T )→ [r] by setting, for every u ∈ V (T ), ϕ(u) = i precisely when L(u) ∈ Vi. Property (i) of
independent labellings shows that this is, in fact, a Sperner colouring of T .

Hence, by Theorem 3.4, T contains a multicoloured simplex. By de�nition of our colouring,
that implies that the labels of the vertices of this simplex belong to di�erent parts of G; that
is, they form a transversal of G. Moreover, since this vertices lie in a common simplex, they are
pairwise adjacent. By Property (ii) of independent labellings, their labels form an independent
set. We have thus found the desired independent transversal.

Figure 12: A 3-partite graph and a subdivision of a 2-simplex with an independent labelling. A
multicoloured simplex and the corresponding independent transversal are highlighted.

It therefore su�ces to �nd an independently-labelled subdivision of an (r − 1)-simplex T . Let
the vertices of the simplex be V (T ) = {t1, t2, . . . , tr}. We shall build up the desired subdivision
and labelling by working our way up through the faces of T , one dimension at a time. We start
with the 0-dimensional faces � the vertices. For each vertex ti of T , choose an arbitrary vertex
vi ∈ Vi from G, and set L(ti) = vi.

Now suppose we have independently-labelled subdivisions of all (d−1)-dimensional faces of T ,
for some 1 ≤ d ≤ r − 1. For every set I = {i1, i2, . . . , id+1} ⊆ [r], consider the d-simplex that is
the d-face FI of T . Let H = G[∪i∈IVi] be the (d+ 1)-partite subgraph of G induced by the parts
whose indices lie in I.

We then have a subdivision of the boundary of ∂FI , together with an independent labelling of
its vertices with vertices from H. Applying Claim 4.12, we can �nd a labellling of a d-dimensional
subdivision of the face FI . Since this does not a�ect the subdivision of the boundary ∂FI , we
can combine these subdivisions of all the d-faces, so that we now have independently-labelled
subdivisions of all the d-faces.

When d = k, the d-face is the whole simplex T , giving the desired labelled subdivision, and
thus completing the proof.

It remains, of course, to prove Claim 4.12. In order to �nd a nice labelling of a nice subdivision
of a simplex, we shall �rst need the nice subdivision of the simplex. This is given to us by our
next claim.39

Claim 4.13. Suppose we have a d-simplex T and a subdivision T ′ of the boundary ∂T . There is
a subdivision T of the full simplex T with ∂T = T ′, and an ordering < of V (T ), such that:

39It may look like we are proving this à la Zeno � introducing in�nitely many claims, each halving the distance
to the result � but this is the last claim, promise.
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(i) every boundary vertex precedes any interval vertex; that is, if u ∈ V (T ′) and v ∈ V (T ) \
V (T ′), then u < v, and

(ii) every internal vertex is adjacent in T to at most 2d preceding vertices (internal or boundary).

Given this claim, the proof of Claim 4.12 is straightforward.

Proof of Claim 4.12. We are given T ′, a subdivision of the boundary ∂T of the d-simplex T , and
an independent labelling L′ : V (T ′)→ V (H).

By appealing to Claim 4.13, we �nd a subdivision T of the simplex T , with ∂T = T ′, together
with an ordering < of V (T ). Our goal is to create an independent labelling L : V (T )→ V (H).

For every vertex u ∈ V (T ′), we set L(u) = L′(u). We will process the remaining vertices (those
in the interior, V (T ) \ V (T ′)) according to the order <.

Suppose we are currently considering some vertex v ∈ V (T ). Since it is in the interior of T ,
Property (i) in the de�nition of independent labellings poses no restriction � we could choose a
label L(v) from any part of H. However, we shall have to ensure that we maintain Property (ii).
In particular, if v is adjacent to some preceding (and thus labelled) vertex u in T , then we cannot
have L(v) adjacent to L(u) in H.

However, by Property (ii) of Claim 4.13, there are at most 2d such preceding neighbours u of
v. Each of these neighbours is adjacent to at most ∆ vertices in H, and so there are at most 2d∆
forbidden labels for v. On the other hand, H has d+ 1 parts, each of size at least 2∆, and so the
number of remaining vertices in H is at least 2(d+1)∆−2d∆ > 0. Choose one of these arbitrarily
to be the label L(v).

Repeating this process for each vertex in turn, we obtain an independent labelling of T .

4.6 A subdivision of low degeneracy

All we have left, then, in our proof of Theorem 4.8, is to prove Claim 4.13.40 Now you may wonder
why we have roamed into a new subsection of these notes. The truth is that, by reducing Theo-
rem 4.8 to Claim 4.13, we have crossed the border from combinatorics to topology. Unfortunately,
we have only been granted short-term tourist visas for these foreign lands, leaving us enough time
for a quick sketch without being able to delve into details. Indeed, at some point, we will have to
take some topological facts for granted. While this should not live up to your standards of what
a proof should be,41 the aim is to provide you with some intuition for why the claim should be
true, and we shall hopefully succeed in this endeavour.

Sketch of the proof of Claim 4.13. The proof is by induction on the dimension, d. The base case,
d = 1, is straightforward, as we need only add one internal vertex adjacent to the two boundary
vertices of the 1-simplex.

Now we proceed with the induction step, with d ≥ 2. The �rst observation is that, as previously
discussed, we can always lift a subdivision T ′ of the boundary ∂T to a subdivision L(T ′) of the
simplex T by adding a single internal vertex and adding it to each of the (d− 1)-simplices in T ′.
While this is certainly a subdivision, this does not prove Claim 4.13, because this new internal
vertex may well be adjacent to too many preceding vertices.

Hence what we do is imagine we added all these edges, thus giving a subdivision with a lot
of imaginary edges. We then will slowly change this subdivision into something acceptable by
removing one imaginary edge at a time. This will require the introduction of many new internal
vertices, but, using the induction hypothesis and a little topological wizardry, each of these new
internal vertices is adjacent to at most 2d previous vertices.

Step 0 Starting with our imaginary subdivision L(T ′) (with only one internal vertex, with an
imaginary edge to every boundary vertex), order the imaginary edges arbitrarily.

40This is akin to reaching Mount Everest's Base Camp, and remarking that all we have left are 3484 metres.
41After all, what follows is not the greatest proof in the world; no, this is just a tribute.
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Step 1 In our current subdivision (all real edges + all surviving imaginary edges), consider the
next imaginary edge. Call this edge e. In steps 2 to 6, we will modify the subdivision to remove e.

Step 2 In order to remove e, we will have to replace all the simplices containing e in our current
subdivision. Consider the union of these simplices � these must account for some volume of
space surrounding the edge e. In other words, the union of these simplices looks like42 a closed
d-dimensional ball43, which we will call Be, of which e is a diameter.

In three dimensions, you might imagine this union of simplices containing e looks something
like a mandarin44, with each segment of the mandarin representing one of the simplices, and the
edge e being the stringy white �bre45 that runs from top to bottom.

Figure 13: A half-peeled mandarin, or the union of subsimplices containing e?

Step 3 What we need to do is �nd a new subdivision of Be that does not use the edge e.
46 We

can then use the new subdivision for Be, and use the rest of the old subdivision for T \ Be, and
we will have a subdivision of T that does not use e.47

Step 4 It is a topological fact that in a nice subdivision,48 if we consider the union of the
simplices that make up Be, and remove the edge e, what we end up with is essentially the (d− 2)-
dimensional sphere Sd−2. In our three-dimensional example, we get an equatorial circle on the
surface of the mandarin that separates the endpoints of the edge e.49

Step 5 We now consider the (d− 1)-dimensional closed ball we obtain by ��lling in" this sphere
Sd−2, which we call B′e. That is, consider the surface of the ball that is exposed when we cut along
the equatorial circle. B′e is topologically equivalent to a (d − 1)-simplex, and has a subdivided
boundary (the remaining faces of the simplices surrounding e).

In Figure 4.6 below, if one looks closely at the �rst image, one can make out a triangulation of
the surface of the mandarin, with each of the segments of the mandarin contributing a triangle.
This is not a valid subdivision of B′e, because the central vertex is in too many edges to boundary

42If you smooth out the surface a little, which doesn't really change anything.
43The closed unit d-ball Bd is the set of points ~x ∈ Rd such that

∑d
i=1 x

2
i ≤ 1. Its boundary is the (d − 1)-

dimensional sphere Sd−1, consisting of all points ~x ∈ Rd with
∑d

i=1 x
2
i = 1.

44Or tangerine, or clementine, or whatever you prefer.
45There is presumably a proper term for this, but it shall not be found here.
46In our fruity three-dimensional example, we want to �nd a new way to divide up the interior of the mandarin,

rather than splitting it into its segments.
47Since our new subdivision for Be only changes the interior, and not the boundary, we can still combine it with

the old subdivision outside Be.
48This is where we drop any pretence of rigour, and shall not attempt to de�ne what we mean by a �nice

subdivision." Rest assured that the subdivisions used in this process are all nice enough for this fact to be applicable.
49You can think of the endpoints of the edge e as the little green stub of the mandarin and its antipode, situated

at the north and south poles with respect to this equatorial circle.
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vertices. We �x this by induction: we can add interior vertices to B′e, with each new vertex being
adjacent to at most 2(d− 1) previous vertices, to obtain a subdivision of B′e.

Hence the subdivision of the �rst image represents the initial imaginary subdivision of B′e in
Step 0 of our induction hypothesis. What we will instead use is the �nal subdivision the induction
hypothesis gives us, shown in the second picture.

Figure 14: The cut mandarin, exposing the 2-simplex B′e inside the equator, and the good �nal
subdivision thereof.

Step 6 However, this only gives a subdivision of B′e, a lower-dimensional simplex inside Be.
What we need is a subdivision of all of Be.

We do this by lifting each (d− 1)-simplex in the subdivision of B′e into two d-simplices � one
above the equator and one below. This can be done by adding to each new vertex in B′e two edges:
one to each endpoint of the edge e. This means that instead of being adjacent to at most 2(d− 1)
previous vertices, the new vertices are now adjacent to at most 2d previous vertices, but this is
still okay. This then provides a subdivision of the whole d-ball Be into d-simplices, none of which
use the edge e.

For our three-dimensional mandarin, this means we �nd a di�erent way to cut the mandarin.
Rather than splitting it into its natural segments, we break it up into di�erent pieces, none of
which has a edge that runs the whole length of the mandarin.50

Step 7 This new subdivision of Be, together with the old subdivision of T \Be, gives a subdivision
of T that does not use the edge e. Repeating this process for every imaginary edge e, we will obtain
a subdivision of T that does not use any imaginary edges.

In this subdivision, every new vertex added was adjacent to at most 2d preceding vertices (and
the original internal vertex is not adjacent to any preceding vertices, since all of those edges have
been removed), completing the induction step and the proof of Claim 4.13.

In case you lost track � we did start many pages ago � this completes our proof of Theo-
rem 4.8, showing p(∆, r) ≤ 2∆. If nothing else, you should now appreciate that Sperner's Lemma
is truly an example of topological combinatorics!

5 Fair division

For our �nal application of Sperner's Lemma, we once again stray from our combinatorial cocoon,
venturing this time into the �elds of economics.51 One of the fundamental driving forces behind
economic theory52 is the scarcity of resources � that our wants and needs exceed supplies. This

50Which is a terrible way to eat a mandarin, in our opinion.
51After all, as we have seen, if you want to win a Nobel Prize as a mathematician, economics is your best bet.

What are the odds on Satoshi Nakamoto getting the nod?
52And, arguably, all human endeavour.
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leads to various interesting problems regarding optimal allocation of resources, and we shall focus
on that of fair division. There are many examples one could use to illustrate this problem, ranging
from the judgment of King Solomon53 to the division of post-war Berlin.54 However, rather than
relying on historical examples that, while signi�cant, are far removed from your daily lives, we
shall instead discuss an important dilemma that people face annually � how should one cut one's
birthday cake?

5.1 A piece of cake

Let us set the scene: a young lad named Chris happened to be born an integer number of years
ago, and has invited his friends Alfred and Batman over for his birthday party. They do what
one usually does at a birthday party � reenact their favourite hat problems, play Coup, and eat
Hawaiian pizza. At long last, though, the highlight of the party is brought out from the kitchen.
It is time for the birthday cake.

The song is sung, a wish is made, and the candles are blown out. Now, however, comes the
tricky part. the cake must somehow be cut and divided between the three friends. Unfortunately,
we humans have a tendency to compare what we have to what others have, and then want what
they have instead.55 As we are at a birthday party, though, the goal is to have all the guests be
happy, and to prevent any �ghts from breaking out.56

�Sounds simple enough," you think, �just cut the cake into three equal pieces."
That assumes, though, that there is some measure on the cake, so that we can determine when

two piecees are equal. It further assumes that each friend has the same measure, so that they can
all agree that the pieces made are of the same worth. However, neither of these assumptions are
ones we wish to make.

We will instead work with a much more general model. Assuming there are n people between
whom the cake is to be shared, all we will assume about the people is that, after the cake has
been cut into n pieces, each person can identify their favourite piece (or pieces, in case of a tie).
We shall not assume that the people can rank all n pieces in order of preference, or that they can
somehow quantify how much more they prefer their favourite piece to any other piece.57 We can
now more explicitly state what our goal is.

De�nition 5.1 (Envy-free division). When cutting a cake into n pieces, and distributing these
pieces between n people, the division is said to be envy-free if every person feels that their own
piece is as least as good as that of anyone else.

Of course, it is not always possible to �nd an envy-free division. Suppose, for instance, that
somewhere in your cake is an indivisible yet deadly iota of poison. Assuming further that all of
your friends desire to stay alive,58 then in any division, the person who is served the poisonous
piece will no doubt be envious of everyone else's slice. We therefore will need to impose some
requirements on our friends' cake preferences, but, as we shall see, these requirements are very
mild.

First, though, we need to introduce some notation. We will restrict ourselves to a very particu-
lar way of cutting the cake - by making n−1 parallel cuts, we shall make n slices. To measure the
slices, we use the standard cake units: the cake itself is one cake long, and we shall say that the ith
slice is xi cakes wide. Hence any such division of the cake maps to the point (x1, x2, . . . , xn) ∈ Rn,

53http://en.wikipedia.org/wiki/Judgment_of_Solomon
54As students in Berlin, you should be somewhat familiar with this example, but just in case: http://en.

wikipedia.org/wiki/Berlin_Wall.
55As they say, the grass is always greener on the other side, which tends to turn one green with envy.
56After all, if you are cutting a cake, you have a cake knife nearby, and so to prevent unwanted bloodshed, it is

important to keep ill-will at a minimum. It might, therefore, have been a better idea to have only played Coup
after the cake was cut.

57We are really being very accommodating hosts here, asking the bare minimum we need of our guests in order
to please them.

58So that they may celebrate their own future birthdays with you.
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where xi ≥ 0 for all i and
∑

i xi = 1. The collection of all such points forms an (n−1)-dimensional
simplex.

De�nition 5.2 (Cake simplex). Given n ≥ 2, the cake simplex is the (n−1)-dimensional simplex
∆n−1 = {(x1, x2, . . . , xn) : xi ≥ 0,

∑
i xi = 1} ⊆ Rn.

Figure 15: A point in the cake simplex represents a division of the cake.

We can now de�ne two properties that we shall require our friends' preferences to satisfy.

De�nition 5.3 (Positive and continuous preferences). Given a division of the cake represented
by ~x = (x1, x2, . . . , xn), a person's preference is the choice of which slice (or slices, if some are
equally desirable) that person would choose. We say that their preference is positive if they never
choose a slice with xi = 0,59 and that their preference is continuous if, given some sequence of
divisions ~x(1), ~x(2), . . . → ~x∗, if the person prefers the ith slice in each ~x(k), then they also prefer
the ith slice in ~x∗.60

The following theorem of Simmons and Su shows that, under these two very reasonable as-
sumptions, an envy-free division always exists.

Theorem 5.4. Suppose we are dividing a cake between n friends. If the preferences of the friends
are positive and continuous, then there is an envy-free division ~x∗ ∈ ∆n−1.

We should note that there are many other results on cake-cutting in the literature, which we
sadly do not have time to review. However, the above theorem has some of the mildest restrictions,
and is therefore one of the most applicable.

5.2 The Simmons�Su protocol

The proof of Theorem 5.4 is, in a theoretical sense, algorithmic, and this process is known as the
Simmons-Su protocol. It relies heavily on Sperner's Lemma, applied to carefully-chosen subdivi-
sions of the cake simplex ∆n−1. These are the so-called barycentric subdivisions.

De�nition 5.5 (Barycentric subdivisions). The barycentric subdivision of a one-dimensional
simplex is obtained by dividing the 1-simplex into two smaller 1-simplices of equal length, by adding
the midpoint of the simplex as a new vertex.

59Informally, the person likes cake, and would prefer any part of the cake to an empty slice.
60Informally, this is saying that in�nitesimally small changes in the division should not a�ect one's preferences.

Note that in the limit, there might be other slices which are just as preferable, but the person should always be
happy with the ith slice of ~x∗.

20



The barycentric subdivision T of a d-simplex T is obtained by �rst obtaining a subdivision T ′
of the boundary ∂T by taking the barycentric subdivision of each of the facets. We then lift this to
obtain T = L(T ′), where the internal vertex is placed at the barycentre of T .61

Once we have a subdivision T of the simplex, we can of course obtain a �ner subdivision, by
subdividing each simplex in T .

De�nition 5.6 (kth barycentric subdivision). Denote by T1 the previously-de�ned barycentric
subdivision of a d-simplex T . For k ≥ 2, the kth barycentric subdivision Tk of T is obtained
by taking the union of the barycentric subdivisions of each d-simplex in the (k − 1)st barycentric
subdivision Tk−1 of T .

Figure 16: The 2-simplex ∆2; its barycentric subdivision; its second barycentric subdivision.

We require a couple of properties of the barycentric subdivisions. The �rst shows that there
is a special labelling of the vertices of the kth barycentric subdivision Tk of ∆d.

Claim 5.7. Given the k-th barycentric subdivision Tk of ∆d, and a set of d + 1 symbols A =
{α1, α2, . . . , αd+1}, there is a labelling λ : V (Tk) → A such that each simplex in Tk receives all
d+ 1 symbols on its vertices.

Proof. We �rst consider the case k = 1, where we can use the following labelling: given a vertex
u ∈ V (T1), we set λ(u) = αi if and only if u lies on an (i−1)-face of ∆d, but not on an (i−2)-face.
It can be seen (by induction, for instance) that every d-simplex in T1 contains, for each 0 ≤ k ≤ d,
exactly one barycentre of a k-face of ∆d as a vertex, and so this labelling has the desired property.

Now, given k ≥ 2, recall that the simplices of Tk are obtained by barycentrically subdividing
the simplices in Tk−1. By the k = 1 case, each of these barycentric subdivisions has a good
labelling. Moreover, since the label given to a vertex depends only on the dimension of the face it
lies in, vertices that are in several simplices of Tk−1 always receive the same label. Hence, given
any u ∈ V (Tk), �x a simplex S ∈ Tk−1 such that u ∈ S.62 We then assign the same label to u as
it would receive in the labelling of the barycentric subdivision of S given in the case k = 1. Since
every simplex S′ ∈ Tk is contained within some simplex of S ∈ Tk−1, and the labelling is good for
S, it follows that the vertices of S′ receive all di�erent labels.

The second property we shall need, which we will not prove in these notes, is that the simplices
of the barycentric subdivision have smaller diameter than that of the original simplex.

Fact 5.8. Let T be a d-simplex, and T the barycentric subdivision of T . Then

max
S∈T

diam(S) ≤ d

d+ 1
diam(T ).

With these preliminaries, we can now prove the existence of envy-free divisions.

61The barycentre is the centre of mass of the simplex. In particular, the barycentre of the cake simplex ∆n−1

is the point (1/n, 1/n, . . . , 1/n). Note that this is more a geometric subdivision than just a topological one � the
placement of the vertices, and, as a result, the lengths of the edges play an important role.

62Note that we do not require u ∈ V (Tk−1) � there are vertices u ∈ V (Tk) \V (Tk−1) that we also need to label.
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Figure 17: The labellings of T1 and T2 of ∆2.

Proof of Theorem 5.4. Consider the kth barycentric subdivision Tk of the (n−1)-dimensional cake
simplex ∆n−1. By Claim 5.7, there is a labelling λ : V (Tk) → {α1, . . . , αn} of the vertices, such
that each simplex in Tk has distinct labels on all its vertices.

We shall now de�ne a Sperner colouring ϕ : V (Tk) → [n]. Each vertex u ∈ V (Tk) receives a
label λ(u) = αi, say. Moreover, as a point in the cake simplex, u = ~x represents a division of the
cake. We shall then ask the ith person which slice of the cake they would prefer, if the cake were
divided according to ~x, and let ϕ(u) be their answer.

To see that this is a Sperner colouring, observe that for any I ⊆ [n], the face FI of the simplex
∆n−1 is precisely the set of points {(x1, x2, . . . , xn) ∈ ∆n−1 : xj = 0 if j /∈ I}. By the assumption
of the positivity of preferences, nobody would choose a slice of zero width, and hence the answers
for vertices on the face I will always lie within I. Therefore ϕ is indeed a Sperner colouring.

By Theorem 3.4, it follows that we can �nd a multicoloured simplex S ∈ Tn. This means that
at each vertex of S, a di�erent answer was given. By the property of our labelling λ, these answers
were given by di�erent people. Hence, this multicoloured simplex represents the n di�erent people
choosing n di�erent slices of the cake, as we would want in an envy-free division.

However, we are unfortunately not done.63 While we did get di�erent choices of slices from
the n people, these were choices made at di�erent vertices, which correspond to di�erent divisions.
This does not give us one division where everyone opts for di�erent pieces.

To �nd such a division, we employ a limiting argument. We have shown above that in each
barycentric subdivision Tk, we �nd a multicoloured simplex S(k). There are n vertices and n
colours, giving n! ways in which a simplex can be multicoloured. From this in�nite sequence of
multicoloured simplices, we pass to an in�nite subsequence of multicoloured simplices (S(ki))i≥1

that are all coloured the same way. Recall that the colouring encodes the choices of slices given
by the people. Without loss of generality, we may assume that the �rst person always chooses the
�rst slice, the second person always chooses the second slice, and so on.

Let ~x(i) be the vertex of S(ki) with the label α1 (that is, it is the vertex for which the �rst
person chose the slice). Since the simplex ∆n−1 is compact, this sequence must have a convergent
subsequence; suppose we have ~x(ij) → ~x∗ ∈ ∆n−1. Since the �rst person always chooses the �rst
slice for each division ~x(ij), the continuity assumption implies this person is also content with the
�rst slice at the division ~x∗.

Now consider the rth person, for some 2 ≤ r ≤ n, and let ~y(i) be the vertex of S(ki) with label
αr (that is, the vertex for which the rth person chose the slice). Since x(i) and y(i) both lie in
S(ki), we have ‖~x(i) − ~y(i)‖ ≤ diam(S(ki)).

By Fact 5.8, it follows that diam(S(ki)) ≤
(
n−1
n

)ki
diam(∆n), which tends to zero as i tends

to in�nity. In particular, we must thus have ~y(ij) → ~x∗ as well. Using the continuity of the rth
person's preferences, the rth person is content with the rth slice in the division ~x∗.

In conclusion, each of the n people would be happy with a di�erent slice in the division given
by ~x∗, and hence this is an envy-free division.

63This was evident from the fact that we have not used the continuity assumption on the preferences, nor have
we used anything about k.
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5.3 Rental harmony

We close these notes with a brief discussion about further applications of the Simmons-Su protocol:
sometimes a cake is not just a cake.64 We have already touched upon some other situations where
this could have been applied; for instance, in deciding where to draw the boundaries between the
Soviet, British, American and French quarters of Berlin after the Second World War. In more
modern examples, the protocol could be used to divide prize money between a winning team, to
assign credit for a group project, and so on � the possibilities are endless.

A slightly di�erent setting, which may be of particular interest to you, is the question of rental
harmony. Here we have n roommates, moving into an apartment with n di�erent rooms. There
are some decisions to be made here � who should move into which room, and what portion of
the rent should they pay? We can think of each point ~x ∈ ∆n−1 as representing a division of the
rent between the di�erent rooms, and hope to �nd an envy-free division � an assignment of rent
to the rooms, such that each roommate would prefer a di�erent room.

However, here there is an issue with our assumption of positivity � if there was a room with
zero rent assigned to it, it would be quite popular! Hence the preferences, under this mapping of
rent divisions to the simplex ∆n−1, would not satisfy the positivity, and thus we could not deduce
the existence of an envy-free division.

The solution is to consider not the simplex ∆n−1, but instead its dual. We shall not get into
details here, but the interested reader is invited to consult Su's paper.65 When looking to apply
these methods yourself, if you do not have the patience to compute in�nitely many subdivisions
of the cake simplex, then you'll be happy to hear there's an app for that: Spliddit.

In closing, you may wonder why the Simmons-Su protocol hasn't ushered an era of world peace.
If we can divide resources in an envy-free manner, why do governments struggle to pass budgets?
Why do we even need governments? Sadly, Simmons and Su did not solve the problem of human
greed � while everyone involved may believe their piece is at least as good as everyone else's, that
does not stop them from wanting more.

64Sometimes, the cake is a lie.
65https://www.math.hmc.edu/~su/papers.dir/rent.pdf
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