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1 Introduction

We start off this section by trying to characterize when equality happens in Sperner’s Theorem.
Which antichains have

(
n
bn/2c

)
members?

Recall our proof: If F ⊆ 2[n] is an antichain, then

1 ≥
∑
F∈F

1(
n
|F |
) ≥ ∑

F∈F

1(
n
bn/2c

) =
|F|(
n
bn/2c

) .
In order to have equality, we need to have

(
n
|F |
)
=
(

n
bn/2c

)
for all F ∈ F . That is, all sets in F

must have size either bn/2c or dn/2e. If n is even, this already characterizes the unique maximum
antichain:

(
[n]
n/2

)
For n odd, however there are two possible sizes for the members of F and there

are at least two maximum antichains:
(

[n]
bn/2c

)
and

(
[n]
dn/2e

)
.

Are there more? Can we combine elements from the two middle levels of the boolean poset to
make another maximum antichain? The answer to this question will be a simple consequence of
the main result of this section: the Kruskal-Katona Theorem. One of the central theorems of
extremal combinatorics with significant applications in algebraic combinatorics.

Let us just start slow. If F is a maximum antichain, then let F∗ := F ∩
(

[n]
dn/2e

)
be the members of

F of size dn/2e. Then for sure we cannot anymore have a set of size bn/2c in F which is contained
in a member of F∗. Hence the following definition will be convenient.
Definition 1.1. Given a k-uniform family G ⊆

(
[n]
k

)
, the shadow of G, denoted by ∂G, is the

(k − 1)-uniform family

∂G :=

{
F ′ ∈

(
[n]

k − 1

)
: F ′ ⊂ F for some F ∈ G

}
.

So antichain F cannot contain any sets from ∂F∗. Since F is a maximal antichain and it only
contains sets of size dn/2e and bn/2c, it must be of the form

F = F∗
⋃((

[n]

bn/2c

)
\ ∂F∗

)
.

So F is of maximum size if |F∗| − |∂F∗| is as large as possible.

In fact, by Sperner’s Theorem |F∗| can never be more than |∂F∗|, as that would imply |F| =
|F∗|+

(
n
bn/2c

)
− |∂F∗| >

(
n
bn/2c

)
. So our question about the characterization can be reformulated

about characterizing those dn/2e-uniform families F∗ whose shadow has size as small as |F∗|. Of
course this does happen for F∗ =

(
[n]
dn/2e

)
and for F∗ = ∅, but are there more examples?

We will study this question in even greater generality and will try to answer the following.
Question 1.2. For given n ≥ k, and m, 0 ≤ m ≤

(
n
k

)
, what is the smallest possible shadow a

k-uniform family with m edges can have?
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1.1 A construction.

To get a feel for what could work, let us experiment with k = 2, i.e. with graphs. For a graph its
shadow is the set of vertices that are not isolated. How can we minimize the non-isoltaed vertices?
A cliqe seems like a good idea: once we touched a vertex with one edge, it would seem a waste to
touch a new vertex before occupying all free edges from the new vertex to old vertices. Formally,
we take the largest integer a2 such that m ≥

(
a2

2

)
, take a subset A2 ⊆ [n] of size a2, and add a

clique on A2 in our construction. If m =
(
a2

2

)
, we are done. Otherwise we still have m −

(
a2

2

)
edges to place, we can do that by adding one more vertex and connecting it to vertices of A2.
Note that this is always possible as m−

(
a2

2

)
< a2, as m <

(
a2+1

2

)
=
(
a2

2

)
+ a2. So we managed to

find a construction with a shadow of size a2 + 1. Also, one cannot do better since a2 vertices can
accommodate only

(
a2

2

)
< m edges, and for the remaining edges we need to add at least one more

vertex.

Let us carry on with this idea for larger uniformity k. Given a target edge number m, 0 ≤ m ≤
(
n
k

)
,

it seems like a smart idea to take first a clique of size as large as possible. Let ak be the largest
integer such that m ≥

(
ak

k

)
, take a subset Ak ⊆ [n] of size ak, and add all k-subsets of Ak to our

construction.

We still need to place m −
(
ak

k

)
edges. Since Ak hosts a clique, we are forced to involve a new

vertex in our construction. and We plan to add k-sets that intersect Ak as much as possible, i.e.
in k − 1 vertices. Furthermore, in order to reduce the shadow of the k-sets containing the new
vertex, these (k − 1)-sets will be as densely packed as possible, i.e., they will form a clique within
Ak.

Let ak−1 be the largest integer such that
(
ak−1

k−1
)
≤ m−

(
ak

k

)
. Note that ak−1 < ak, since m−

(
ak

k

)
<(

ak+1
k

)
−
(
ak

k

)
=
(

ak

k−1
)
. We choose a new vertex vk ∈ [n] \ Ak, a subset Ak−1 ⊂ Ak of size ak−1,

and add all those k-sets to our construction which consists of vk and a (k − 1)-subset of Ak−1.

We are left with m −
(
ak

k

)
−
(
ak−1

k−1
)
edges to place. Now we are forced again to involve another

vertex vk−1 in our construction. Note however, that we are not anymore forced to take an entirely
new vertex for vk−1, since

(
ak+1

k

)
> m, so the k-sets of Ak ∪ {vk} should be sufficient to select

our remaining k-sets from. We hence choose a vertex vk−1 ∈ [n] \Ak−1 (note that this is possible,
since ak−1 < ak). In order to minimize the shadow we make sure that the new k-sets we add also
contain vk, and the remaining (k − 2)-sets they contain also form a clique within Ak. This way
the (k−1)-sets containing vk, but not vk−1 are already in the shadow anyhow. For this we choose
an integer ak−2, such that

(
ak−2

k−2
)
≤ m −

(
ak

k

)
−
(
ak−1

k−1
)
, and a subset Ak−2 ⊂ Ak−1. Note that

ak−2 < ak−1, as m−
(
ak

k

)
−
(
ak−1

k−1
)
<
(
ak−1+1
k−1

)
−
(
ak−1

k−1
)
=
(
ak−1

k−2
)
.

In general we proceed similarly. We construct nested sets Ak+1 := [n] ⊃ Ak ⊃ Ak−1 ⊃ · · · ⊃ As

and vertices vj ∈ Aj+1 \Aj , for j = k, . . . , s, such that the size aj of Aj is chosen to be the largest
integer with

(
aj

j

)
≤ m−

(
ak

k

)
−
(
ak−1

k−1
)
−· · ·−

(
aj+1

j+1

)
. Then aj < aj+1, so there is place in Aj+1\{vj}

to choose Aj . We stop whenever
(
as

s

)
= m−

(
ak

k

)
−
(
ak−1

k−1
)
− · · · −

(
as+1

s+1

)
for some s, so there will

be no more k-edge to place. Our construction is then

G =

k⋃
j=s

{T ∪ {vk, vk−1, . . . , vj+1} : T ⊆ Aj , |T | = j} .

That is in the jth step, for j = k, k − 1, . . . , s we add all k-sets containing vk, . . . , vj+1 and a
j-subset of the set Aj . The number of sets in G is(

ak
k

)
+

(
ak−1
k − 1

)
+ · · ·+

(
as+1

s+ 1

)
+

(
as
s

)
,

which, by our stopping rules is equal to m.
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What is the size of the shadow ∂G? There are
(

ak

k−1
)
members contained in Ak. All the remaining

mebers contain vk. The number of those, which contain vk but not vk−1 is exactly
(
ak−1

k−2
)
. And

so on, the number of (k − 1)-subsets in the shadow that contain vk, vk−1, . . . , vj+1, but not vj is
exactly

(
aj

j−1
)
. Hence the size of the shadow is

|∂G| =
(

ak
k − 1

)
+

(
ak−1
k − 2

)
+ · · ·+

(
as+1

s

)
+

(
as

s− 1

)
.

Remark. 1. The expression of the integer m as the sum of binomial coefficients(
ak
k

)
+

(
ak−1
k − 1

)
+ · · ·+

(
as+1

s+ 1

)
+

(
as
s

)
such that ak > ak−1 > · · · > as ≥ k, is called the k-cascade representation of m. Within our
construction we implicitely established the existence of a k-cascade representation for any m. This
representation is also unique (HW)
2. Our construction above contains the k-sets in an initial segment of the so-called colexicographic
order of finite subsets of N. (See HW)

The Kruskal-Katona Theorem states that the previous construction is best possible, that is it gives
the exact minimum size of the shadow of a k-uniform family for any size m.
Theorem 1.3 (Kruskal-Katona, (1963,1968)). If F ⊆

(
[n]
k

)
, with

m =

(
ak
k

)
+

(
ak−1
k − 1

)
+

(
ak−2
k − 2

)
+ · · ·+

(
as
s

)
,

then

|∂F| ≥
(

ak
k − 1

)
+

(
ak−1
k − 2

)
+

(
ak−2
k − 3

)
+ · · ·+

(
as

s− 1

)
.

Our proof strategy will be to modify an arbitrary family F with m k-sets into a nicer, “compressed”
family of the same size, such that the shadow does not increase. The shadow of this nicer family
will be more transparent, which allows us to prove the lower bound for it. We present the proof
in the next two sections.

2 Shifting

Arbitrary k-uniform families can be pretty wild and first we will want to make them “more orderly”.
Our main tool for this will be the shifting operator, which replaces occurrences of i 6= 1 in the sets
of the family with 1—whenever this is possible without “losing sight” of any set from the family.
The hope with performing such an operation is two-fold. On the one hand it seems to “compress”
the family towards the element 1, and hence one would expect the shadow not to increase. On
the other hand shifting seems to mould a family towards the colex construction of the previous
section, where the more transparent structure made the bounding of the shadow accessible.
Definition 2.1. Let F ⊆

(
[n]
k

)
and 2 ≤ i ≤ n. Define the shift operator SFi by letting

SFi (F ) :=

{
F \ {i} ∪ {1} if i ∈ F, 1 6∈ F, and F \ {i} ∪ {1} /∈ F ,
F otherwise

for any F ∈ F . Then we define Si (F) :=
{
SFi (F ) : F ∈ F

}
.

If SFi (F ) 6= F , then we say that the set F shifted.

Let us see a concrete example how the shift operator functions.
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Example 2.2. Let F = {123, 134, 136, 236, 345} ⊂
(
[6]
3

)
(we have suppressed interior set brackets).

Then

S2 (F) = {123, 134, 136, 236, 345} ,

S3 (F) =
{
123, 134, 136, 126 , 145

}
,

S4 (F) =
{
123, 134, 136, 236, 135

}
,

S5 (F) = {123, 134, 136, 236, 345} , and
S6 (F) = {123, 134, 136, 236, 345} .

The boxed triples are the ones that are the results of shifts, the other triples remained the same by
the shift.

Our first claim just verifies that our definition of the shift operation is a good one, in the sense
that we do not “lose” any set from our family while shifting.
Claim 2.3. For any F ⊆

(
[n]
k

)
and 2 ≤ i ≤ n, the shift operator S

(k)
i : F → Si (F) is injective.

In particular, we have

|Si (F)| = |F| .

Proof. Suppose that for some F1, F2 ∈ F we have SFi (F1) = SFi (F2).

First note that it is impossible that exactly one of them, say F1 is shifted. Indeed, otherwise the
shifted set SFi (F1) = F1\{i}∪{1} was not in F , while at the same time it is equal to SFi (F2) = F2

which is in F , a contradiction.

Otherwise we show that F1 = F2. If none of F1 and F2 are shifted then F1 = SFi (F1) = SFi (F2) =
F2. If both of them shifted then we have F1 = SFi (F1) \ {1} ∪ {i} = SFi (F2) \ {1} ∪ {i} = F2.

We expect that exchanging the element 1 into sets of the family will make it “more compressed”.
In our second claim we make this feeling precise by deriving that the shadow after a shift is never
larger than before the shift.
Claim 2.4. For any F ⊆

(
[n]
k

)
and 2 ≤ i ≤ n we have

∂ (Si (F)) ⊆ Si (∂F)

In particular |∂ (Si (F)) | ≤ |∂F|.

Proof. Let us first note that by Claim 1.6 the first part of our statement implies the second one:

|∂ (Si (F)) | ≤ |Si (∂F) | = |∂F|.

Let E ∈ ∂ (Si (F)) be arbitrary. We will show E ∈ Si (∂F). First, note that E = (Si (F )) \ {x}
for some F ∈ F , and x ∈ Si (F ). We proceed by cases.

Case 1. 1, i /∈ Si (F ).

In this case, Si (F ) = F , since 1 /∈ Si (F ). Thus, E ⊂ F , i.e., E ∈ ∂F . Since i /∈ E, we have
that Si (E) = E, and so E ∈ Si (∂F).

Case 2. 1, i ∈ Si (F ).

In this case, we again have Si (F ) = F (since i ∈ Si (F )). As before, we then have E ∈ ∂F .
Now, if x 6= 1, we have Si (E) = E, since 1 ∈ E, and so E ∈ Si (∂F), as desired. If x = 1,
then E′ = E \ {i} ∪ {1} ⊂ F . Since E′ ∈ ∂F , we then have that E is blocked from shifting
(for if E shifts, then Si (E) = E′, which is absurd), and so Si (E) = E. Thus, E ∈ Si (∂F)
as always.
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Case 3. 1 /∈ Si (F ) and i ∈ Si (F ).

As in earlier cases, we have that Si (F ) = F , and so E ∈ ∂F . However, since then 1 /∈ F
and i ∈ F , we must have that F ′ = F \ {i} ∪ {1} ∈ F . If x = i, then Si (E) = E as in
previous cases, and we are done. If x 6= i, then we note that since E′ = F ′ \ {x} ∈ ∂F , and
E′ = E \ {i} ∪ 1, that Si (E) = E in this subcase, and we are again happy.

Case 4. 1 ∈ Si (F ) and i /∈ Si (F ).

Now, since i /∈ E, we have that Si (E) = E, and so if E ∈ ∂F , we are done. If F = Si (F ),
we get this immediately, so we may assume F 6= Si (F ). So, we must have that i ∈ F ,
1 /∈ F , and F \ {i} ∪ {1} /∈ F . Now, if x = 1, we then have that E ⊂ F , and so E ∈ ∂F ,
as desired. If x 6= 1, then we have that E′ = E \ {1} ∪ {i} ⊂ F , and so E′ ∈ ∂F . Since we
may assume E /∈ ∂F (or we’re done), we then have that E ∈ Si (∂F), since E = Si (E

′) in
this subcase.

2.1 Stable families

In our proof we plan to keep performing shifts on the given arbitrary k-uniform family F until no
shift changes it anymore.
Definition 2.5. A family F is called stable if Si (F) = F for all i ≥ 2.
Claim 2.6. For any F ⊂

(N
k

)
, there exists some stable G ⊂

(N
k

)
such that |G| = |F| and |∂G| ≤

|∂F|.

Proof. If F is stable, we are done, so assume not. Let F (1) = Si (F) for some i such that F (1) 6= F .
By the instability of F , F (1) must exist. By Claim 1.6, we have that

∣∣F (1)
∣∣ = |F|, and by Claim

1.7, we have that
∣∣∂F (1)

∣∣ ≤ |∂F|. Thus, if F (1) is stable, we have found the required G. Otherwise,
we may repeat process, say k times, to find a F (k) such that

∣∣F (k)
∣∣ = |F|, and ∣∣∂F (k)

∣∣ ≤ |∂F|.
Moreover, the number of times we can perform this operation is finite (since we increase the
number of sets containing 1 at each step), and so we must eventually find a stable family F (k) for
some finite k with the desired properties.

The motivation for stable families and Claim 1.9 is that the firstm sets of
(N
k

)
in the colexicographic

order (our construction) is a stable family, and it is easier to show that the shadow of this family
has the necessary size. Not all stable families are of this form 1, so we unfortunately need a few
more claims to prove the desired result.

Let F ⊂
(N
k

)
, let F0 = {F ∈ F : 1 /∈ F}, let F1 = {F ∈ F : 1 ∈ F}, and let F−1 = {F \ {1} : F ∈ F1}.

Note that then F−1 ⊂
( N
k−1
)
.

We will show that if F is stable, then a great deal of information about ∂F is encoded in the
form and size of F−1 . In particular, the size of the shadow ∂F is completely controlled by F−1 .
Eventually, we will use this to prove Theorem 1.3.

Claim 2.7. If F is stable, then ∂F0 ⊆ F−1 .

Proof. Let E ∈ ∂F0. Then E = F \ {x} for some F ∈ F0 and x ≥ 2. Since F is stable, we have
SFx (F ) = F . Since 1 /∈ F , and x ∈ F , the only reason for F not shifting can be F ′ = F \{x}∪{1}
already being in F . Since 1 ∈ F ′ we also have F ′ ∈ F1 and then E = F ′\{1} ∈ F−1 , as desired.

Claim 2.8. If F is stable, then ∂F = F−1 ∪ {E ∪ {1} : E ∈ ∂F−1 }. In particular, |∂F| =∣∣F−1 ∣∣+ ∣∣∂F−1 ∣∣.
1for example, any collection of k-sets in which all sets contain 1 is stable
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Proof. By the previous claim ∂F0 ⊆ F−1 ⊆ ∂F1, so ∂F = ∂F0 ∪ ∂F1 = ∂F1. Now note that
F−1 is defined to contain exactly those members of the shadow ∂F1 which do not contain 1. For
those members F ∈ ∂F1 of the shadow that do contain 1 there must be some (in fact unique, by
Claim 1.6) x 6= 1, such that F ∪ {x} ∈ F1. But then F = E ∪ {1} for the set E = (F ∪ {x}) \
{1} \ {x} ∈ ∂F−1 , as desired.

3 Putting the claims together

Proof of Theorem 1.3. The proof is by double induction, first on k and then on m.

The base case of k = 1 is simple. The 1-cascade expansion is m =
(
m
1

)
and the shadow of a

1-uniform family is always {∅} having
(

m
1−1
)
= 1 member.

We assume k ≥ 2 and prove our statement by induction on the cardinality m of F . If m = 1,
then k-cascade expansion is m =

(
k
k

)
and the family consists of a single k-set F . Then the shadow

indeed contains only the
(

k
k−1
)
(k − 1)-subsets of F .

From now on let us also assume that m > 1.

We may assume that F is stable, since otherwise we would take the stable family G with |G| = |F|,
provided by Claim 1.9, show the appropriate lower bound on |∂G| and use that |∂G| ≤ |∂F|.

As above let F0 = {F ∈ F : 1 6∈ F}, F1 = {F ∈ F : 1 ∈ F}, and F−1 =
{
F ∈

(
[n]\1
k−1

)
: F ∪ {1} ∈ F1

}
.

We claim that∣∣F−1 ∣∣ ≥ (ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+ · · ·+

(
as − 1

s− 1

)

Indeed, otherwise

|F0| = |F| − |F1| = |F| −
∣∣F−1 ∣∣

>

((
ak
k

)
+

(
ak−1
k − 1

)
+ · · ·+

(
as
s

))
−
((

ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+ · · ·+

(
as − 1

s− 1

))
=

(
ak − 1

k

)
+

(
ak−1 − 1

k − 1

)
+ · · ·+

(
as − 1

s

)
But then, using Claim 1.10 and induction for the family F0 (note that |F0| < |F| since F is
stable), we obtain

∣∣F−1 ∣∣ ≥ |∂F0| >
(
ak − 1

k − 1

)
+ · · ·+

(
as − 1

s− 1

)
,

which is a contradiction. Therefore, applying Claim 1.11 and induction for the (k − 1)-uniform
family F−1 , we get

|∂F| =
∣∣F−1 ∣∣+ ∣∣∂F−1 ∣∣

≥
((

ak − 1

k − 1

)
+ · · ·+

(
as − 1

s− 1

))
+

((
ak − 1

k − 2

)
+ · · ·+

(
as − 1

s− 2

))
≥
(

ak
k − 1

)
+ · · ·+

(
as

s− 1

)
,

as desired.
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