Asymptotics

In the exercise class for Discrete Math I review we struggled a bit with ${ }^{1}$ Exercise 4 and the asymptotic comparisons. So, I will sketch some of the proofs here.
(1) $n!=o\left(n^{n}\right)$.

We can use the estimate $n!\leq e n\left(\frac{n}{e}\right)^{n}$, which is true for all positive integers n. Then $\frac{n!}{n^{n}} \leq e n\left(\frac{1}{e}\right)^{n}$, and the limit of the right hand side is 0 . Hence $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$.
Alternatively, we have

$$
\frac{n!}{n^{n}}=\left(\prod_{i=1}^{n / 2} \frac{i}{n}\right)\left(\prod_{i=n / 2+1}^{n} \frac{i}{n}\right) \leq \prod_{i=1}^{n / 2} \frac{i}{n} \leq \frac{1}{2^{n / 2}}
$$

Or even more simply, we can use $n!\leq n^{n-1}$.
(2) $n^{n}=o\left(2^{n^{2}}\right)$.

Let $f=n^{n}$ and $g=2^{n^{2}}$. Then $\log f=n \log n$ and $\log g=n^{2}$. We have $\log (f / g)=$ $\log f-\log g=-\log g(1-\log f / \log g)=-n^{2}(1-\log n / n)$. Since $\lim _{n \rightarrow \infty} \log n / n=0$, we get $\lim _{n \rightarrow \infty} \log (f / g)=-\infty$. This implies that $\lim _{n \rightarrow \infty} f / g=0$.
Alternatively, we can use the identity $x=2^{\log x}$ to write $f=2^{n \log n}$. We then get

$$
\frac{f}{g}=\frac{1}{2^{n^{2}-n \log n}},
$$

which approaches 0 as n approaches ∞.
(3) $2^{n^{2}}=o\left(2^{2^{(\log n)^{2}}}\right)$.

Let $f=2^{n^{2}}$ and $g=2^{2^{(\log n)^{2}}}$. Again by using $x=2^{\log x}$, we have $g=2^{n^{\log n}}$ and hence

$$
\frac{f}{g}=\frac{1}{2^{n^{\log n}-n^{2}}}
$$

Therefore, $\lim _{n \rightarrow \infty} f / g=0$.
Note that if $f=o(g)$ then $f=O(g)$. Also, if $f=o(g)$ and $g=o(h)$ then $f=o(h)$. Another observation that simplifies things is that if $\lim _{n \rightarrow \infty}(\log g-\log f)=\infty$, then $f=o(g)$, which is what we have used in (2) and (3).

[^0]
[^0]: ${ }^{1}$ or at least I did

