
The Erdős-Turán conjecture

A set S of positive integers is k-AP-free if
{a, a + d, a + 2d, . . . , a + (k � 1)d} ✓ S implies
d = 0.

sk(n) = max{|S| : S ✓ [n] is k-AP-free}

How large is sk(n)? Could it be linear in n?

Erdős-Turán Conjecture (Szemerédi’s Theorem)
For every constant k, we have

sk(n) = o(n).

Construction (Erdős-Turán, 1936)

s3(n) � n
log 2
log3.

S = {s : there is no 2 in the ternary expansion of s}

S is 3-AP-free. For n = 3l, |S \ [n]| = 2l

Roth’s Theorem (1953) s3(n) = o(n).
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History of Szemerédi’s Theorem

Szemerédi’s Theorem (1975) For any integer k � 1
and � > 0 there is an integer N = N(k, �) such that
any subset S ✓ {1, . . . , N} with |S| � �N contains
an arithmetic progression of length k.

Was conjectured by Erdős and Turán (1936).
Featured problem in mathematics, inspired lots of gre-
at new ideas and research in various fields;

• Case of k = 3: analytic number theory
(Roth, 1953; Fields medal)

• First proof for arbitrary k: combinatorial
(Szemerédi, 1975)

• Second proof: ergodic theory (Furstenberg, 1977)
• Third proof: analytic number theory

(Gowers, 2001; Fields medal)
• Fourth proof: fully combinatorial

(Rödl-Schacht, Gowers, 2007)
• Fifth proof: measure theory (Elek-Szegedy, 2007+)
One of the ingredients in the proof of Green and Tao:
“primes contain arbitrary long arithmetic progression”
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Applications of the Regularity Lemma

Removal Lemma For 8� > 0 9� = �(�) such that
the following holds. Let G be an n-vertex graph such
that at least �

⇣
n
2

⌘
edges has to be deleted from G

to make it triangle-free. Then G has at least �
⇣
n
3

⌘
tri-

angles.

Proof. Apply Regularity Lemma (Homework).

Roth’s Theorem For 8✏ > 0 9N = N(✏) such that
for any n � N and S ✓ [n], |S| � ✏n,
there is a three-element arithmetic progression in S.

Proof. Create a tri-partite graph H = H(S) from S.

V (H) = {(i,1) : i 2 [n]} [ {(j,2) : j 2 [2n]}
[{(k,3) : k 2 [3n]}

(i,1) and (j,2) are adjacent if j � i 2 S
(j,2) and (k,3) are adjacent if k � j 2 S
(i,1) and (k,3) are adjacent if k � i 2 2S
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Roth’s Theorem — Proof cont’d

(i,1), (i+ x,2), (i+2x,3) form a triangle
for every i 2 [n], x 2 S.
These |S|n triangles are pairwise edge-disjoint.

+
At least ✏n2 � ✏

18

⇣|V (H)|
2

⌘
edges must be removed

from H to make it triangle-free.

Let � = �
⇣

✏
18

⌘
provided by the Removal Lemma.

There are at least �
⇣|V (H)|

3

⌘
triangles in H.

S has no three term arithmetic progression
+

{(i,1), (j,2), (k,3)} is a triangle iff j�i = k�j 2 S.
Hence the number of triangles in H is equal to
n|S|  n2 < �

⇣
6n
3

⌘
, provided n > N(✏) :=

j
1
�

k
. 2

12



Behrend’s Construction

Construction (Behrend, 1946)

s3(n) � n
1�O

⇣
1p

logN

⌘

.

Construct set of vectors ā = (a0, a1, . . . , al�1):

Vk = {ā 2 ZZl : kāk2 = k, 0  ai <
d

2
for all i < q},

where kāk =
qPl�1

i=0 a
2
i .

Interpret a vector ā 2 {0,1, . . . , d� 1}l as an integer
written in d-ary:

nā =
l�1X

i=0
aid

i.

Let

Sk = {nā : ā 2 Vk}
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Claim Sk ✓ [dl] is 3-AP-free for every k.

Proof. Assume nā + nb̄ = 2nc̄.
Then ai + bi = 2ci for every i < l, because ai + bi
and 2ci are both < d (so there is no carry-over)
So ā+ b̄ = 2c̄. But

k2c̄k = 2kc̄k = 2
p
k = kāk+ k̄bk � kā+ b̄k,

and equality happens only if ā and b̄ are parallel. Since
they are of the same length, we conclude ā = b̄. 2

Take the largest Sk. Bound its size by averaging:

ā 2 {0,1, . . . , d� 1}l ) kāk2 < ld2,
so there is a k for which

|Sk| �
|Si Si|
ld2

=
(d/2)l

ld2
=

dl�2

2ll

For given N , choose l =
p
logN and d = N

1
l .


