The Erdős-Turán conjecture

A set S of positive integers is k-AP-free if
$\{a, a+d, a+2 d, \ldots, a+(k-1) d\} \subseteq S$ implies $d=0$.
$s_{k}(n)=\max \{|S|: S \subseteq[n]$ is k-AP-free $\}$
How large is $s_{k}(n)$? Could it be linear in n ?
Erdős-Turán Conjecture (Szemerédi's Theorem)
For every constant k, we have

$$
s_{k}(n)=o(n) .
$$

Construction (Erdős-Turán, 1936)

$$
s_{3}(n) \geq n^{\frac{\log 2}{\log 3}} .
$$

$S=\{s:$ there is no 2 in the ternary expansion of $s\}$
S is 3-AP-free. For $n=3^{l},|S \cap[n]|=2^{l}$
Roth's Theorem (1953) $s_{3}(n)=o(n)$.

History of Szemerédi's Theorem

Szemerédi's Theorem (1975) For any integer $k \geq 1$ and $\delta>0$ there is an integer $N=N(k, \delta)$ such that any subset $S \subseteq\{1, \ldots, N\}$ with $|S| \geq \delta N$ contains an arithmetic progression of length k.

Was conjectured by Erdős and Turán (1936).
Featured problem in mathematics, inspired lots of great new ideas and research in various fields;

- Case of $k=3$: analytic number theory (Roth, 1953; Fields medal)
- First proof for arbitrary k : combinatorial (Szemerédi, 1975)
- Second proof: ergodic theory (Furstenberg, 1977)
- Third proof: analytic number theory (Gowers, 2001; Fields medal)
- Fourth proof: fully combinatorial (Rödl-Schacht, Gowers, 2007)
- Fifth proof: measure theory (Elek-Szegedy, 2007+) One of the ingredients in the proof of Green and Tao: "primes contain arbitrary long arithmetic progression"

Applications of the Regularity Lemma

Removal Lemma For $\forall \gamma>0 \exists \delta=\delta(\gamma)$ such that the following holds. Let G be an n-vertex graph such that at least $\gamma\binom{n}{2}$ edges has to be deleted from G to make it triangle-free. Then G has at least $\delta\binom{n}{3}$ triangles.

Proof. Apply Regularity Lemma (Homework).
Roth's Theorem For $\forall \epsilon>0 \exists N=N(\epsilon)$ such that for any $n \geq N$ and $S \subseteq[n],|S| \geq \epsilon n$, there is a three-element arithmetic progression in S.

Proof. Create a tri-partite graph $H=H(S)$ from S.

$$
\begin{aligned}
V(H)= & \{(i, 1): i \in[n]\} \cup\{(j, 2): j \in[2 n]\} \\
& \cup\{(k, 3): k \in[3 n]\}
\end{aligned}
$$

$(i, 1)$ and $(j, 2)$ are adjacent if $j-i \in S$
$(j, 2)$ and $(k, 3)$ are adjacent if $k-j \in S$
$(i, 1)$ and $(k, 3)$ are adjacent if $k-i \in 2 S$

Roth's Theorem — Proof cont'd

(i,1), $(i+x, 2),(i+2 x, 3)$ form a triangle for every $i \in[n], x \in S$.
These $|S| n$ triangles are pairwise edge-disjoint.

At least $\epsilon n^{2} \geq \frac{\epsilon}{18}\binom{|V(H)|}{2}$ edges must be removed from H to make it triangle-free.

Let $\delta=\delta\left(\frac{\epsilon}{18}\right)$ provided by the Removal Lemma.
There are at least $\delta\binom{|V(H)|}{3}$ triangles in H.
S has no three term arithmetic progression
$\{(i, 1),(j, 2),(k, 3)\}$ is a triangle iff $j-i=k-j \in S$. Hence the number of triangles in H is equal to
$n|S| \leq n^{2}<\delta\binom{6 n}{3}$, provided $n>N(\epsilon):=\left\lfloor\frac{1}{\delta}\right\rfloor$.

Behrend's Construction

Construction (Behrend, 1946)

$$
s_{3}(n) \geq n^{1-O\left(\frac{1}{\sqrt{\log N}}\right)}
$$

Construct set of vectors $\bar{a}=\left(a_{0}, a_{1}, \ldots, a_{l-1}\right)$:
$V_{k}=\left\{\bar{a} \in \mathbb{Z}^{l}:\|\bar{a}\|^{2}=k, 0 \leq a_{i}<\frac{d}{2}\right.$ for all $\left.i<q\right\}$,
where $\|\bar{a}\|=\sqrt{\sum_{i=0}^{l-1} a_{i}^{2}}$.
Interpret a vector $\bar{a} \in\{0,1, \ldots, d-1\}^{l}$ as an integer written in d-ary:

$$
n_{\bar{a}}=\sum_{i=0}^{l-1} a_{i} d^{i}
$$

Let

$$
S_{k}=\left\{n_{\bar{a}}: \bar{a} \in V_{k}\right\}
$$

Claim $S_{k} \subseteq\left[d^{l}\right]$ is 3-AP-free for every k.

Proof. Assume $n_{\bar{a}}+n_{\bar{b}}=2 n_{\bar{c}}$.
Then $a_{i}+b_{i}=2 c_{i}$ for every $i<l$, because $a_{i}+b_{i}$ and $2 c_{i}$ are both $<d$ (so there is no carry-over) So $\bar{a}+\bar{b}=2 \bar{c}$. But

$$
\|2 \bar{c}\|=2\|\bar{c}\|=2 \sqrt{k}=\|\bar{a}\|+\|\bar{b}\| \geq\|\bar{a}+\bar{b}\|,
$$

and equality happens only if \bar{a} and \bar{b} are parallel. Since they are of the same length, we conclude $\bar{a}=\bar{b}$.

Take the largest S_{k}. Bound its size by averaging:
$\bar{a} \in\{0,1, \ldots, d-1\}^{l} \Rightarrow\|\bar{a}\|^{2}<l d^{2}$,
so there is a k for which

$$
\left|S_{k}\right| \geq \frac{\left|\cup_{i} S_{i}\right|}{l d^{2}}=\frac{(d / 2)^{l}}{l d^{2}}=\frac{d^{l-2}}{2^{l} l}
$$

For given N, choose $l=\sqrt{\log N}$ and $d=N^{\frac{1}{l}}$.

