Exercise Sheet 4.

Tibor Szabó

Discrete Mathematics III — Constructive Combinatorics, Summer 2012 Due date: May 23rd (Wednesday) by 8:30, at the beginning of the exercise class.

Problem 1. Generalize the upper bound proof of Füredi (for $K_{3,3}$ -free graphs) and show that $ex(n, K_{4,4}) \lesssim \frac{1}{2}n^{7/4}$. (Hint: Instead of lower bounding $\sum {x_i \choose 3}$ in terms of $(\sum x_i)^3$ (which follows from the convexity of ${x \choose 3}$) you might want to bound it from below in terms of the product of $\sum {x_i \choose 2}$ and $\sum x_i$.)

Problem 2. Let the vertex set of a graph G be \mathbb{F}_p^4 . Let (a, b, c, d) be adjacent to (a', b', c', d') if and only if (a + a')(b + b')(c + c')(d + d') = 1. Prove that G contains a $K_{n^{1/4}, n^{1/4}}$.

Problem 3. The k-color Ramsey number $R_k(G)$ is the smallest integer m, such that no matter how the edges of K_m are colored with k colors, there exists a monochromatic copy of G.

Show that $R_k(K_{3,3}) = (1 + o(1))k^3$.

(*Hint:* For the lower bound use the projective norm-graphs and the Key Lemma.)

Problem 4. Use the projective norm-graphs together with Füredi's idea (which improves the $K_{2,2}$ -free Construction 2 to a $K_{2,s}$ -free construction) to give a $K_{3,s}$ -free construction whose number of edges comes within a factor $\sqrt[3]{2} + o(1)$ of the KST upper bound of $ex(n, K_{3,s})$ for every $s \ge 3$ of the form $s = 2r^2 + 1$, $r \in \mathbb{Z}$. (The o(1) above is understood as $s \to \infty$.) More generally, prove that for any fixed t

$$\lim_{s \to \infty} (\liminf_{n \to \infty} ex(n, K_{t,s}) n^{-(2-1/t)}) = \infty.$$