Exercise Sheet 5.

Tibor Szabó

Discrete Mathematics III — Constructive Combinatorics, Summer 2012 Due date: June 13th (Wednesday) by 8:30, at the beginning of the exercise class.

Problem 1. Derive the Moore bound for even girth. That is, show that if G is a d-regular graph with girth 2k, then

$$n(G) \ge 2\sum_{i=0}^{k-1} (d-1)^i.$$

Problem 2. Let \mathcal{P} be the set of points $x = (x_{-2}, x_{-1}, x_0, x_1, x_2)$ of the projective four-space PG(q, 4) and let Q_4 be the quadratic surface defined for Benson's C_6 -free graph: $Q_4 = \{x \in \mathcal{P} : x_0^2 + x_1x_{-1} + x_2x_{-2} = 0\}.$

Prove that the following properties hold:

(i)
$$|Q_4| = q^3 + q^2 + q + 1$$

- (*ii*) Q_4 contains $q^3 + q^2 + q + 1$ lines,
- (*iii*) every line of Q_4 contains q + 1 points,
- (iv) every point is contained in q+1 lines of Q_4 .

Problem 3. Show that no 3-dimensional subspace of PG(q, 6) is fully contained in the quadratic surface

$$Q_6 = \{ x \in PG(q, 6) : x_0^2 + x_1 x_{-1} + x_2 x_{-2} + x_{-3} x_3 = 0 \},\$$

which we defined for Benson's C_{10} -free construction.

Let \mathcal{P} be a set of *points*, and let \mathcal{L} be a set of *lines*. A subset $I \subseteq \mathcal{P} \times \mathcal{L}$ is called an *incidence relation* on $(\mathcal{P}, \mathcal{L})$, and then we say that the triple $(\mathcal{P}, \mathcal{L}, I)$ is a *(rank two) geometry*.

The incidence graph Γ of the geometry is defined on $V(\Gamma) = \mathcal{P} \cup \mathcal{L}$, and its edge set is $E(\Gamma) = \{pl : p \in \mathcal{P}, l \in \mathcal{L}, (p, l) \in I\}.$

We say that the function $\pi : \mathcal{P} \cup \mathcal{L} \to \mathcal{P} \cup \mathcal{L}$ is a *polarity* of geometry $(\mathcal{P}, \mathcal{L}, I)$ if

- (i) $\mathcal{P}^{\pi} = \mathcal{L}$ and $\mathcal{L}^{\pi} = \mathcal{P}$,
- (*ii*) for every point p and every line l, we have that p and l are incident if and only if their polar images are incident, i.e $(p, l) \in I \iff (l^{\pi}, p^{\pi}) \in I$,
- (*iii*) $\pi^2 = \text{id}.$

In case a polarity exists we can define the *polarity graph* Γ^{π} of the geometry as follows: $V(\Gamma^{\pi}) = \mathcal{P}$, and $E(\Gamma^{\pi}) = \{p_1 p_2 : p_1 \neq p_2, (p_1, p_2^{\pi}) \in I\}.$

We say that $p \in \mathcal{P}$ is an *absolute point* of π if $(p, p^{\pi}) \in I$. The set of all absolute points is denoted by $N_{\pi} = \{p : p \text{ is absolute point of } \pi\}$.

Problem 4. Prove the following properties.

- (i) If $p \in N_{\pi}$, then we have $d_{\Gamma^{\pi}}(p) = d_{\Gamma}(p) 1$. Otherwise, $d_{\Gamma^{\pi}}(p) = d_{\Gamma}(p)$.
- (ii) $|V(\Gamma^{\pi})| = \frac{1}{2}|V(\Gamma)|$ and $|E(\Gamma^{\pi})| = \frac{1}{2}(|E(\Gamma)| |N_{\pi}|),$
- (iii) If $C_{2k+1} \subseteq \Gamma^{\pi}$, then $C_{4k+2} \subseteq \Gamma$,
- (iv) If $C_{2k} \subseteq \Gamma^{\pi}$, then there are two copies of C_{2k} in Γ such that one is the polar dual of the other,
- (v) $g(\Gamma^{\pi}) \ge \frac{1}{2}g(\Gamma)$.