Exercise Sheet 6.

Tibor Szabó

Discrete Mathematics III — Constructive Combinatorics, Summer 2012 Due date: June 20th (Wednesday) by 8:30, at the beginning of the exercise class.

Problem 1. Let $\mathcal{P}_* = \{(a, b, c) : a, b, c \in \mathbb{F}_q\}, \mathcal{L}_* = \{[d, e, f] : d, e, f \in \mathbb{F}_q\},$ and $((a, b, c), [d, e, f]) \in I_*$ if and only if e - b = da, f - c = ea. Prove that the incidence graph of the above geometry $(\mathcal{P}_*, \mathcal{L}_*, I_*)$ is nothing else but Wenger's C_6 -free construction.

Problem 2. Let $q = 2^{2\alpha+1}$ and define π_* by

$$\pi_* : (a, b, c) \quad \mapsto \quad \left[a^{2^{\alpha+1}}, (ab)^{2^{\alpha}} + c^{2^{\alpha}}, b^{2^{\alpha+1}} \right],$$

$$\pi_* : [d, e, f] \quad \mapsto \quad \left[d^{2^{\alpha}}, f^{2^{\alpha}}, (df)^{2^{\alpha}} + e^{2^{\alpha+1}} \right].$$

- Prove that π_* is a polarity.
- Prove that set of absolute points is

$$N_{\pi_*} := \{ (a, b, a^{2^{\alpha+1}+2} + ab + b^{2^{\alpha+1}}) : a, b \in \mathbb{F}_q \}.$$

- Show that Γ_*^{π} is C_6 -free and conclude that $ex(n, C_6) \geq \frac{1}{2}n^{4/3} \frac{1}{2}n^{2/3}$.
- Show that Γ_*^{π} is also C_3 -free and C_4 -free. (We needed these properties in the lecture to produce an even denser C_6 -free graph.)

Problem 3. Finish the proof of the theorem of Füredi, Naor, and Verstraete from the lecture by calculating the expected number of edges of H if A is selected randomly: independently put each vertex of G into A with the same probability p. (This eventually should prove that $ex(n, C_6) \geq 0.534n^{4/3}$.)