Chapter 5

The symmetric Ramsey-problem

5.1 What sort of explicit?
Let us recall that the Ramsey number
R(k,l) = min{n : V graph on n vertices contains either K} or K;}.

The most interesting question concerns the symmetric case, i.e. when £k = [. We call
a graph k-Ramsey if both the largest independent set and clique are of order less than
k. R(2,2) = 2 is a triviality, while R(3,3) = 6 is a standard first year combinatorics
exercise. It is already a nontrivial task to construct a 4-Ramsey graph of order 17 and
prove that it is the best possible, i.e. that R(4,4) = 18. About R(5,5) we only know
that it is between 43 and 49.

In 1935 Erdés and Szekeres showed that R(k,1) < (*7'7?), so in particular R(k, k) <
4%, For a while the Turdn graph (1941) on (k—1)? vertices provided the best lower bound.
In fact Turdn believed this to be the truth, i.e. that R(k,k) = (k — 1)?. It came as a
great surprise in 1947 when Erdés, using non-constructive methods proved that R(k, k)
is of exponential order. His paper, showing the existence of k-Ramsey graphs of order

\/§k, is often considered the starting point of the Probabilistic Method in combinatorics.

It is a frustrating fact that today, these two ingenious but relatively simple arguments
provide more or less the best known bounds. Some small improvements came along later,
but only by a polynomial factor for the upper bound and a constant factor for the lower
bound, requiring more and more advanced methods. The upper bound improvements
culminated in the recent work of Conlon who managed to slice down a factor slightly
larger than polynomial from the upper bound, though his bound is still way below
an exponential improvement. The 70-year-old lower bound of Erdds and the 80-year-old
upper bound of Erdés and Szekeres still stand rock solid, noone can show R(k, k) > 1.42*
or R(k,k) < 3.99*. 1t is one of the great open problems of combinatorics to prove that

limy o0 W exists and if it does to determine its value.

The lower bound of \/§k obtained by Erdds was using the probabilistic method, and
did not give any pointers how to construct a good Ramsey graph explicitly, not even
with significantly worse parameters. The best constructive lower bound for decades was
provided by the Turdn graph on (k — 1)? vertices.
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84 Chapter 5. The symmetric Ramsey-problem

A notable candidate for good Ramsey-graphs are the Paley graphs. The Paley graph
P, is defined on V(P,) = F, for every prime p for that —1 is a quadratic residue modulo
p (i.e., p = 1 (mod 4)). Vertices z and y are adjacent if z — y is a quadratic residue.
Observe that, because of our assumption on p, £ — y is a quadratic residue if and only if
y — x is a quadratic residue; that is adjacency is well-defined. It is a common beleif that
the Paley graphs provide good k-Ramsey graphs — except noone can prove it. In fact, to
prove that w(P,) < p'/2~¢ for some positive € would be a major number theoretic advance.
Modulo the generalized Riemann hypothesis (GRH), it was proven by Montgomery that
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Figure 5.1: The quotient 1°gzl(P)”) in the Payley-graph P, for the primes p < 7000

there is some constant ¢ > 0, such that the first clogploglogp integers form a clique
in the Paley graph P, for infinitely many primes p. This means that the Paley graphs
k

cannot be expected to provide constructive k-Ramsey graphs on p = 2¢e* vertices in
general. However, it is also true modulo the GRH that there is a constant C such that
the first C'log ploglog p integers do not form a clique. This might be a good indication

to believe that the Paley graphs are k-Ramsey graphs onp= 9ciee® vertices for arbitrary

prime p? (It is worth to compare the exponent Clogk with the best known probabilistic

lower bound where the main term in the exponent is 7 k and the constructive lower bound
of the Turdn graph where the exponent would be logz(k — 1) ~2logk.)

These results show that even though Paley graphs are k-Ramsey graphs of not ex-
ponential order in general, there is indication that they are pretty close to that. Not
to mention that for sporadic values of p, they could still be reaching exponential order.
Figure 5.1 is based on computer calculations made by Shearer about the clique number
(and hence independence number) of Paley graphs for primes up to p < 7000. One can
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always observe some irregularly small values, like the clique number of Fsg; is only 16,
it is remarkable to compare this with the upper bound that one can actually prove in
general, which is |4/5501| = 74.

Exercise 5.1 Show that the Paley graph P, s self-complementary and edge-transitive
(that is for each pair of edges zy and uv € E(P,) there is a graph automorphism

¢:V(P,) — V(P,) such that ¢({z,y}) = f({u,v}).

Exercise 5.2 Observe that P; provides the construction for R(3,3) = 6. Prove that Py
does not contain a cliqgue or independent set of order 4 and show that R(4,4) = 18.

Exercise 5.3 One can define the Paley graph P, analogously for prime powers q. Show
that of q itself is an odd square, then w(P,) = \/q.

Knowing the existence of certain combinatorial structures is great, however in theoret-
ical computer science, in particular in questions related to various models of complexity,
it is desirable having the the structure in our hand, constructed explicitly. Moreover, as
the best known ” construction” of a k-Ramsey graph is the random graph G(n, 1/2), good
explicit constructions for the Ramsey problem might also be useful in imitating random-
ness efficiently, another key feature in theoretical computer science. I doubt Erdés had
any of these motivations in mind, when in the late 60s he had the the good taste to ask
for an explicit construction of k-Ramsey graphs on 1.01% vertices. Still, as it is the case
with many of his beautiful questions, this one also hit something important right on
the head; something whose importance turned out only later. In the last section of this
chapter we will see that besides the above connections to computer science, the question
of explicit constructions had a great influence in motivating extremal hypergraph theory;
a completely unexpected development.

5.1.1 The Abbott-product

Answering the challenge of Erdds, in 1972 Abbott gave a curious super-quadratic con-
structive lower bound. For any integer ¢, he gave a method to construct an infinite
sequence of k-Ramsey graphs on k' vertices “efficiently”. Given two graphs G and H (to
simplify the definition assume they contain one loop at each vertex) let us define their
product G ® H by
V(G® H) = V(G)x V(H), and
E(G X® H) = {(91, hl)(gg,hg) 10102 € E(G) or g1 = g and hlhg € E(H)}
Informally, one can imagine that we take v(G) copies of the graph H and then include
all edges between two such copies if the vertices of G corresponding to the copies are
adjacent in G. One can easily check (please do!) that
v(G® H) =v(G) - v(H),
w(G® H) =w(G)-w(H) and (5.1)
a(G® H) =a(G) -a(H)
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Exercise 5.4 Prove the properties in (5.1).

Suppose that we got for birthday a graph G with n(G) > max{w(G), a(G)}*°. Then by
the multiplicativity of these parameters, for G ® G we have a similar inequality:

n(G ® G) = n(G)? > max{w(G), a(G)}* = max{w(G ® G),a(G ® G)}*°,

The same is true for any Abbott-power of G, which gives us the infinite sequence of
explicit Ramsey graphs — provided that we have the graph to start from.
How can we get a hold of just one k-Ramsey graph for some k with, say, k'° vertices?

Well, we know k-Ramsey graphs do ezist if the number of vertices is not more than \/§k.
Certainly, at one point \/ﬁk overtakes k'°, so let ky, be the smallest integer such that

V2" > ki°. Check the graphs on kf° vertices, one of them certainly will be ko-Ramsey.
How long will this take? Nothing... only constant time... Never mind that k£, = 144
so you might have to calculate the clique number and independence number of possibly

14410 .
2("3 ) graphs on 144!° vertices.

Is this now an "explicit construction”? Apparently Erdés did not think so and was not
too content with it. Today, one would disagree with him (not about being non-content).
In the age of computer and efficiency, it sounds completely reasonable to call the above
an explicit construction: there is a fast (that is, polynomial time) algorithm telling us
which vertices are adjacent and which vertices are not, i.e., the graph is constructable in
polynomial time. What else would you want to call explicit?

Exercise 5.5 Prove that the Abbott product is an explicit construction in the ”effi-
cient”, computer scientific sense. That 1s, show that for any n you are able to
construct the adjacency matriz of a ‘Yn-Ramsey graph G, on m wvertices, in time
polynomial in n. Give a concrete upper bound, bounded by a polynomial in n, on
the number of steps this takes.

Even more, show that given any two vertices 1 and j from the verter set [n| of
G., you can tell whether they are adjacent in time polynomaal in just logn. This
question 1s motivated by the fact that describing © and 5 only takes logn bits.

Intuitively it is clear what Erdés didn’t like about the Abbott construction: it is
“cheating” to look at that many graphs to find our starter. In the first phase the
construction uses brute force in finding the object it knows to exist. It is not using
any kind of clever idea or structure to pull out the hay from the haystack, but rather
goes in there, picks up every single object from the haystack, studies it carefully, and finds
the hay eventually (which is BTW not real hay, more like a pseudo-hay with still more
features similar to a needle...). On the other hand, one must also not forget that such
brute force is used only in a very small (constant size) haystack, which will eventually
be negligible compared to the graphs constructed from it.

Before going on to study constructions more to Erdds’ liking in the next section, we
further explore the Abbott-product in particular to enhance our definition of an explicit
construction.
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One problem with the above argument in its current form is that it won’t give us
anything superpolynomial, that is no k-Ramsey graph on &/(*) vertices with f(k) — oo.
Even if we had a starter ko-Ramsey-graph with kg8 '°8'°8%° yertices, by taking its Abbott-
powers we don'’t get an infinite sequence with the same parameters. The Abbott-product
takes away the superpolinomial relation between the order and the clique number: al-
ready for the square of the starter we would not have n > w'°glogloew,

How can we get something really superpolynomial? Well, we know that most of the
graphs on n vertices are incredibly good Ramsey graphs: in other words the random
graph G(n,1/2) has clique number and independence number that are both at most
2log, n with extremely high probability. Hence it looks to be a good idea to take the
Abbott-product of all graphs on n vertices, since most of them have very small clique-
and independence-numbers.

To be more precise, let X C [n] be a subset of k vertices. One can easily calculate
the probability that K induces a clique (or an independent set) in G(n, 1/2):

1
Pr[K is a clique] = —; (5.2)
2(2)
Then by the union bound
) Y\ (%) < ne >k
Pr[3 clique of order k] < <k>2 < ga-nz) (5.3)

2logyn
: : e 1 _
which is at most («/ﬁngJ < foam for k = 2log,n. In other words, less than
1

logzn—fraction of the family D = D,, of all labeled graphs on n vertices contains a
clique of order 2log, n.

Let G be the Abbott-product of all graphs from D. Then

o(G) =2,

€ =

where |D| = 2(3). By the above one can estimate the clique number of G using (5.1)
as follows:

w (G) < (2logy n) - 9IPnPl < (210g, n)PlnPl = (41og, n)P.

Remark. Here we estimated the clique number of (1 — €)|D| graphs by 2log, n, but
were seemingly pretty generous when we estimated the clique number of the rest of the
graphs by n. Nevertheless our estimate is relatively precise since random graph theory

tells us that almost all graphs do have clique number at least log,n, so w >

(]_og2 n)(1*0(1))|D\ .
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Since the independence number can be estimated analogously by (5.1), G is an
infinite sequence of k-Ramsey graphs with

( logloglogk )
k loglog loglog k

vertices. (Check the calculation!) Moreover G is clearly an explicit construction, it

can be constructed in polynomial time. G is finally a construction of superpolynomial
order: the exponent % does tend to infinity, though pretty slowly, it reaches
the value 3 for example only when k > 225,

Looking at the number of vertices n/P! and the clique number (4logn)/®! of G
it becomes apparent that the larger the family D the more we lose from the Ramsey
properties of the majority of its members by the product. So it would be nice if we
could guarantee the same calculations, properties with a smaller family. For this we
need to look closer what we really did need about the family D in order to carry out
the critical calculations? Well, we needed to know the probability that a particular set
of k vertices forms a clique and then just used the union bound. Why did we know that

the probability that a particular k-set forms a clique is 2_(5)? Because when we select a
member of D uniformly at random the appearance of each edge is independent from the
appearence of all other edges. The crucial observation is now that we do not need the
full power of independence of the coordinates in the family D. We use this calculation
for k = 2log, n so the independence of any set of 2login > (%) variables is enough to
guarantee (5.2). And then, everything else follows.

5.1.2 d-wise independent sample spaces

Let us make the previous wishful thinking more precise.

Definition: A sample space S C {0,1}" is a multiset of vectors endowed with the
uniform distribution.

Remark: 1. We rather choose to avoid using the formal notation of a multiset. For ex-
ample when we talk about the cardinality of a sample space S and write |S|, we mean
the cardinality as a multiset, where each element is counted with multiplicity.

2. The concept of a multiset with the uniform distribution is a convenient way to approx-
imate a probability space on the set of vectors {0,1}" with an arbitrary distribution:
first we approximate the probabilities of the vectors with rational numbers having a
common denominator D and then we take the sample space of cardinality D where each
vector has multiplicity of the numerator of its probability.

3. We adopt the usual convention and think of vectors written vertically, i.e., members
of the sample space are N x l-matrices. Then a sample space can be thought of as a
N x |Sy|-matrix whose columns are endowed with the uniform distribution.

Definition: A sample space S C {0, 1} is independent if for any a € {0, 1}", we have

1

Prycs[s=a] = oN
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Remark: In fact independent sample spaces are pretty boring. The sample space S = 2V
is independent and all independent sample spaces are essentially of this form: members
of 2["! must have the same multiplicity.

The problem with the perfect independence of independent sample spaces is their
size 2V. The following is the key definition of this subsection.
Definition: For a sample space S C {0,1}" and a subset J = {71,...,14} C [N] of the
coordinates, let

S|y :=1{(ss,..-,8,):s€S}yC{0,1}°

be the sample space in dimension d with cardinality |S|;| = |S|. The sample space S|;
is called the projection of S onto J.

A sample space S C FY is called d-wise independent if for any J C [N], |J| = d, the
projection S|; C {0, 1} is independent.

Remark: 1. The d-wise independence of a sample space Sy is equivalent to the (well-
established) notion of d-wise independence of the set of N uniform random variables
obtained from the rows of the matrix whose columns are the elements of Sy.

Exercise 5.6 Show that d-wise independence of a sample space implies its d -independence
for every d' < d.

The following theorem claims that if one is content with just d-wise independence one
can have a sample space of size significantly smaller than 2¥. Even more importantly,
the solution is constructive.

Theorem 5.1 (Alon, Babai, Itai) For every odd integer d and N = 2t — 1 with t € N,
we can construct a d-wise independent linear sample space S C {0,1} of size

S| = 2(N +1)% .

Remark: The restriction of d being odd is not significant one. For an even d, one could
take the (d + 1)-independent sample space of size 2(N + 1) from the theorem and use
Exercise 5.6 to conclude its d-wise independence.

Note the word lznear in the statement. It means that we willingly restrict our search
for a d-wise independent sample space to those ones that are closed under addition
(and constant multiplication, which, in characteristic 2, is not saying too much). In
particular, we focus on finding a generating set of vectors whose span possesses the
d-wise independence property.

We will use the following simple fact about linear maps: if L : F™ — F¢ is a linear
map, where m > d and I is a (finite) field, then the number of solutions z € F™ to Lz = a
is either |F|™ 7em*(L) or 0, depending on whether a is in the image of L. In particular,
to prove that the number of solution is the same for each a, it is enough to check that
the linear map L is surjective, that is its matrix of L has rank d. Consequently, if the d
rows of the matrix L with entries from I, are linearly independent, then the multiset

St:={Lz:z € Fy} C {0,1}*
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is an independent sample space of size 2™ in dimension d. Note that S¥ can also be
written as the sample space generated by the columns ¢; € F$ of L, that is,

St = {Z:mzcz 1T € F’;}
i=1

Hence we observed the following connection between linear and “probabilistic” indepen-
dence.

Claim 6 Let L be a d x m-matriz with 0 or 1 entries, where d < m. The following
are equivalent

e the rows of L are linearly independent over FFy
o the sample space St generated by the columns of L is independent.

The whole point of the above simple training with basic linear algebra was to formu-
late the following immediate consequence for d-wise independence.

Corollary 5.2 The linear sample space S* C {0,1}" generated by vectors c¢i,...,Cm €
{0, 1}V is d-wise independent if and only if any d rows of the matriz L with columns
C1,...Cm are linearly independent.

Proof. (of Theorem 5.1) Now how to get the magic matrix expressed in Corollary 5.27
When we hear the condition of Corollary 5.2 that any d rows of a matrix are linearly in-
dependent, it immediately rings the bell: ”moment curve” (recall Wenger’s construction
of Cs- and Cio-free graphs with many edges from Section 3.3). We saw there that for
any field IF and any d < |F| vectors from the set My = {(1,a,0?,...,a* ') : a € F} C F¢
is linearly independent. This gives rise to an (|F| x d)-matrix with the required property
and we could choose F to be a however large finite field. Hence we would have a linear
sample space of size 2¢ (independent of the length N) and keep the d-wise independence
property. Wow! At the same time this also sounds suspicious, too good to be true ...

Yes, first of all we ignored that for a sample space we need 0/1-vectors and not
coordinates from an arbitrary finite field. Let us try to fix this and start with a a bit of
wishful thinking. If we could just encode the elements of the finite field as bit-vectors,
but still keep the linear independence property ... In principle the elements of, say, Fs;
can be encoded with bit-vectors of length [log, 37| = 6. But then, to keep the linear
independence, we would need somehow that when we add the bit-vector of o* and the
bit-vector of 8¢ ( mod 2) the result would be the bit-vector of their sum in the field Fa;.
Furthermore linear independence of the vectors in M3; is over F37, while the independence
of the bit-vectors should be over F,. So just an arbitrary bit-vector encoding will not
do.



5.1. What sort of explicit? 91

That’s how the field Fo: comes into play. The elements of F,: have a canonical
encoding with elements of F%, which is a linear space over F,, such that addition in the
field Fy: is just usual addition of vectors.!

Set N = 2°. The dimensions of our matrix A will be N times t(d — 1) + 1, where
d < N is an arbitrary integer.

Let ay, ...,y be an arbitrary ordering of the elements of Fo:. We define the ** row
vector as the concatenation of an entry 1 and all the powers of the element o, up to the
(d— 1)th power. In fact the first coordinate 1 just represents the Oth power, which is the
same for every a;. More precisely, labelling the coordinates from 0 up to ¢(d — 1), the
row vector r; between coordinates (j — 1)t + 1 and jt is o (where the power is computed
in Fy: but the result is written as an element of F%).

Example. To continue our example of t = 3, let N = 2% = 8 and let, say, d = 4. The
matrix we define will have dimension 8 x 10. The rows are labelled by the binary vectors
of length 3. Let us look at what is in the fifth row (labelled by the field element z* + 1).
The first element is a 1. The next three are 1,0, 1, which are just the coordinates of z2+1
when written in F3. For the next three entry we must calculate that (z? + 1)? = 2% + z
in the field Fs and for the last three we calculate that (z? + 1)* = z + 1. Hence the fifth
row is 1,1,0,1,1,1,0,0,1, 1.

Let us now take d arbitrary rows of this matrix, for notational simplicity we denote
them by ri,...,7r4, defined by elements ay,...,a4. How could a linear combination
z17T1 + - -+ + x47rq be the zero vector for some z = (z4,...,24) € Fg? For that to happen
first we would need "% . z; = 0 to hold, because of the first column and then also that
¢ z;0] = 0 holds, because of the columns from (j — 1)t + 1 to j¢. Note that here
we started to interpret the equations over [F,q, even though we would only be concerned
about a nontrivial solution z from Fg. But at this point it is not clear how to distinguish
them from other solutions in ng.

!The elements of Fy: are polynomials of degree at most ¢ — 1 over F, factored with an irreducible

degree t polynomial. So once the irreducible polynomial is fixed, such a representation can be given as
the coefficients of the terms of degree at most ¢ — 1.
Example. To give an example for a finite field, let ¢ = 3. We fix the degree 3 polynomial f(z) = 23+ z + 1;
it is irreducible, (please belive me, I checked it...). The members of the field Fg are the polynomials
0,1,z,z+1,z%,22 + 1,22 + 2,22 + =+ 1. These members can of course be denoted by 0/1 vectors of length
3, the coefficient of the monomials z2, z, and 1 giving the three coordinates. This is in fact completely
meaningful when talking about add:ition in Fg as that is defined exactly as it would happen in the linear
space F3. For multiplaction, however, we need the fixed polynomial f(z). The product of two field
elements is their usual product as polynomials modulo the equation z3 + z 4+ 1 = 0; that is, whenever we
see a power larger than 2, we simplify by substituting > = —z — 1 = z + 1. To take an example, consider
(Z2+z)(z+1)=z*+22%+z+1l=z z+z+1l=(z+)z+z+1l=22+2z+1=22+1.
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Hence we have the following system of d equations in Fya.

7 + - 4+ g =0
101 S R TgOlg = 0
ti0f + - + zgai = 0 (5.4)
Ti08 + -+ + zg08 = 0

The matrix of this system is the Vandermonde matrix, which is non-singular, so the
unique solution = € ]ng is the 0-vector: the d rows rq,..., 74 are linearly independent.

Concluding, we constructed a N x (¢(d— 1)+ 1)-matrix A with every d of its rows lin-
early independent over F,. Then Corollary 5.2 implies that the linear sample space
S4 C {0,1}" generated by the columns of A is d-wise independent and its size is
o(d-1)t+1 _ g prd—1

This is roughly the square of the size we promised in the theorem. In order to improve,
we must pinpoint what was wasted in the previous argument. The clear candidate for
this is our inability so far to use that that the coefficients z; of the linear combination of
the rows are not just arbitrary elements from [F,q, but either 0 or 1. How can we make
use of that? Squares of sums in characteristic 2 are very simple to handle, because the
mixed terms fall out, so let us consider the square of equation of the first powers of the
(o 7

2 2.2 2.2 2 2
0= (21014 + -+ T404)° = zia] + - + 505 + E 2z,z;Q,00; = T105 + -+ + ag.
1<J

We just derived that the equation for the squares of the o; is a consequence of the
equation for the first powers. In the last equality we did use that z; = 0 or 1, because
we replaced z? with z;.

The same squaring trick applies to the equation for the bth powers for arbitrary b.
The mixed terms fall out as they have coefficient 2, and z? can be replaced with z;
because z, € F, and thus we obtain the equation for the (2b)th powers:

0= (z:05 4 - +z405)* =22a® + ... + 22a% + Z 2z;z;0008 = rial” 4+ - + o
1<7

Hence the equation 0 = z,05 + - - - + o for any even power s = b-2" < 2° — 1, where
r > 1 and b is odd, can be obtained from the equation 0 = z,a8 + - - - + a, by squaring
it 7 times.

Hence we can construct a shorter matrix B using only the odd powers as follows. Let
N = 2 — 1. The dimensions of our matrix B will be N times t£ + 1, where £ < N/2 is
an arbitrary integer, and our d = 2£ + 1.

Recall that ay,...,ay is an arbitrary ordering of the nonzero elements of Fy:. The
1t* row vector is the concatanation of a 1 and all the odd powers of the element ;. More
precisely, labeling the coordinates from 0 up to ¢l, the vector r; between coordinates
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jt+1and (5 +1)tis 27!
as an element of F%).

Let us take d = 2£ + 1 rows 74, ...,ry of the matrix, defined by elements a4,...,a,.
How could a linear combination ;71 + - -+ + z474 be the zero vector for some z € F2?
For that we would need >.¢ | z; = 0, because of the first column and 3¢ | z,02" ' =0,
because of the rows from jt + 1 to (5 + 1)t. These are £ equations and 2 + 1 variables.
We obtain however the equations for the even powers as described above and end with
the thesame equation system (5.4) and the same conclusion as above: there is only the
trivial £ = 0 solution. The d rows are independet.

The dimensions of our matrix B is N xt{+1, whose columns generate a d-independent

sample space of size 2¢t1 = 2(N + 1)

(where the power is computed in Fy but the result is written

O

Remark: The matrix constructed above is well-known in classical coding theory: it is es-
sentially the parity check matrix of the famous BCH-codes discovered by Hocquenghem
(1959) and independently by Bose and Ray-Chaudhuri (1960). Matrices with our prop-
erty define linear codes where the weight of each code-word is at least d, and as such
these codes correct up to d/2 errors.

Let us now return to our original problem of constructing Ramsey graphs. We define
N = (), d = 2logj n, and take our d-wise independent sample space of size 2(N+1)(¢-1)/2
we have just constructed. We interpret the members of this sample space as graphs on
n vertices and denote their family by A. If we take the Abbott product of all graphs in
A, we have a graph G with nl4 vertices and clique- and independence number at most

(41log, n)Ml. After doing the math we obtain that we constructed a k-Ramsey graph of
Order k logloglogk .

Exercise 5.7 Verify the calculation.

This is alright: we improved from three times iterated logarithm in the exponent to
two-times iterated logarithm.

Can we get even better? We will further reduce the size of our sample space signifi-
cantly by being content with providing 2log> n-wise independence only approzimately.

5.1.3 Almost independent sample spaces

We relax the requirement of independent sample spaces and not require any longer that
each bit-vector appears with the same probability, but only that each appears with
roughly the same probability (up to an error of ¢).
Definition: A sample space S C FY is called e-close to independent if for any a € {0, 1}%,
we have

|Prics(s=a) —27V| <e.

Note that being 0-close to independent is equivalent to being independent.



94 Chapter 5. The symmetric Ramsey-problem

We remark that in our applications the € will be chosen to be much smaller than 27V,
so the definition of e-closeness does not become meaningless.

As we commented earlier, in order to get the full power of independence one needs at
least 2V vectors in the sample space. First we will see a construction of Alon, Goldreich,
Hastad, and Peralta, which shows how to explicitly construct a sample space of size of
only f—; provided we are content with our sample space being only e-close to independent.

Then we will combine this construction with our construction of the previous section
of a d-wise independent linear sample space of size 2(N + 1)(4~1)/2 and obtain a sample
space of even smaller size (logarithmic in N), which is only e-close to being d-wise
independent.

Definition: The sample space S C {0,1}" is called e-close to d-wise independent if for
any subset J € ([Z’]) of the coordinates, the (d-dimensional) projection sample space S|;
is e-close to independent.

Note that being 0-close to d-wise independent is equivalent to being d-wise indepen-
dent.

In the main result of this section we will prove the following theorem, which constructs
sample spaces whose size is only logarithmic in N and polynomial in their imperfectness
measurements, i.e., in d and %

Theorem 5.3 (Naor and Naor) Let N = 2t — 1 with t € N, let d > 1 be an odd integer,
and let € > 0. Then there is a sample space R C {0,1}" of size at most

250 +1)° &
which 1s e-close to d-wise independent.

Proof. The proof of this theorem will be carried out in three subsections.

Linear tests

The concept of being e-close to independent is somewhat inconvenient /tedious to check,
hence we develop a more effective way to test it.

Definition: A sample space S C {0, 1}" is called e-unbiased with respect to linear tests
if for any a € {0,1}" \ {0"},

|Procs[s-a=0] — Prys[s-a=1]| <e.

Here 0N denotes the vector of length N having only 0 coordinates, while s - a =
vazl s;a; represents the usual dot-product of vectors over F5. Note that S is e-unbiased
with respect to linear tests if and only if for any a € {0,1}" \ {0V}, the 1-dimensional
sample space {s-a:s € S} C {0,1} is ¢/2-close to independent.

Exercise 5.8 Show that if a sample space S C {0,1}" is e-close to independent then
it 1s also €2V -unbiased with respect to linear tests. Construct a sample space that



5.1. What sort of explicit? 95

shows the statement being best possible (for all sensible values of the parameters N
and €).

The following lemma is a sort of converse of the previous exercise and establishes the
usefulness of linear tests in proving e-closeness to independence.

Lemma 5.3.1 (Vazirani) Let S C {0,1}? be a sample space that is e-unbiased with re-
spect to linear tests. Then S 1s e-close to independent.

Proof. (Alon, Goldreich, Hastad, and Peralta) We make use of the basic properties of the
discrete Fourier transform on the group (H, +) = (F%, +), contained in the Toolbox. Let
us fix a vector a € {0,1}% and let p(a) = Pr[s = a] be the probability in question. We
need to show that the function p : H — C* does not deviate much from its average 1/2°.

The key observation is that the probability difference when we make a linear test with
some test vector b € H is precisely the Fourier transform of p evaluated at the character
corresponding to b. Hence by our assumption all, but the leading, Fourier coefficients of
p are known to to be small (at most €/2¢) and this will imply that p is uniformly random
looking. The leading Fourier coefficient corresponds to the vector b = 0¢ and hence it is
1/24.

Formally, let b € H. Then

Pr[s-b=0]—Prlc-b=1] = ZPr[s:a]—ZPr[s:a]

=3 (-1)**p(@) = ¥ xs(a@)pla) = B(xs),

where ¥, is the character of H defined by x;(a) = (—1)>°. Using the formula of the
Inverse Fourier Transform to express p(a), we obtain an estimate on how much can p(a)
deviate from its average.

1 1 o
9(0) 52| = 0| X P(e) 1
beH
L[, .
< 5a | 1BG) Ixo(@)] + > 16(xs)| [xs(a)] — 1
s
1 24 — 1
<o 1+;€—1 =6
b#£0
and the lemma is proved. OJ

The previous lemma is also useful to test e-closeness to d-wise independence.
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Definition: 'The sample space S C {0,1}¥ is called e-unbiased with respect to linear
tests of size at most d if for every a € {0,1}" \ {0V}, 0 < 3. a; < d, we have

|PTSES[8'a: 0] —P?‘ses[s-a: 1]| <e.

The following corollary is immediate from the definitions and applying Lemma 5.3.1
for the d-dimensional projections.

Corollary 5.4 Let S C {0,1}" be a sample space that is e-unbiased with respect to
linear tests of size at most d. Then S 1s e-close to d-wise independent.

Almost independent sample spaces via the quadratic character

In this section we use the intuition that quadratic residues form a random subset within
the additive structure of the finite field I, where p is a prime number. This is the same
heuristics why we think the Paley-graphs have relatively good Ramsey-properties. We
will construct p bit vectors of length m (where m will be at most ,/p). For each z € IF,,
we consider the integers z + 1, £ + 2, etc ...., £ + m and the characteristic vector r(%) of
them being not a quadratic residue.

Formally, we define the sample space B2, := {r{® : z € F,} C {0,1}™ of size p, where

@) 0 ifz+1€ QR(p)
Tl 1 ifz+i€QNR(p)or=0

Proposition 5.5 (Alon, Goldreich, Hastad, and Peralta) For every m < ,/p, the sam-
ple space B?, 1s %-unbiased respect to linear tests.
Note that for this proposition to have some power we better have m < 6./p with some
0 < 1; the smaller the 9, the better.
Proof. The key is the use of the theorem of Weil (Theorem A.37), which states that the
values of non-principal characters behave randomly in some sense. We are able to apply
this powerful tool, because of the explicit connection between the vectors of the sample
space and the quadratic character g, of F;. That is, we have (—1)”5‘2) = pp(z + 1) for
every ¢ € F, and ¢ € [m] with z + ¢ # 0.

Let us fix our “linear tester” a € {0,1}™. As we saw in the proof of Lemma 5.3.1,
the probability difference in question can be expressed as follows.

Pr[r®.a=0] - Pr[r®.a=1] = Z Procr,(z =b) — Z Pryer,(z = b)

bEFp beFp
T(b)-azo r(b)-azl

21 _y®a 1 T v Pas
—pZ( 1) pZH( 1)

beF, beF, i=1
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We want to replace H;’;l(—l)’”gb)‘” with []7,(0,(0+1))* = 0,(][12;(b+17)*%) and then
use Weil’s Theorem for the quadratic character g,. Since for the sake of Weil’s Theorem
0, is extended to the whole [, by defining p,(0) := 0, we can make the replacement only
if b+ # 0 or, if b+ 1 = 0 but the corresponding power a; = a,  is 0. Otherwise, when
[T, (0p(b+1))* = 0, that is, when b € [p—m,p— 1] and a,_, = 1, then we estimate the
absolute value of the terms trivially, by 1. Note that since m < p, for most of the b this
does not happen.

Pr[r®.a=0] -Pr[r®.a=1]| <

1 i A\as r(@).g X \\a;
<= T +ap=+ > ((—1) — [ (a0 + ) )

p beF, i=1 be[p—m,p—1] i=1

a’p—b:]'

1 e o n
<=1 e (H(bH) ) +-

p beFy i=1 p

n—1 m m
< + — < —.

E
E

p

At the end we applied Weil’s theorem for the quadratic character g, which has order
2 and the polynomial f(z) = [[.-;(z + ¢)* which has at most m distinct roots and is
certainly not a square. [

Lemma 5.5.1 (Naor and Naor) Suppose that for some integers N,d, m,p, we can con-
struct a d-wise independent linear sample space L C {0,1}" of size 2™ and a sample
space S C {0,1}™ which is e-unbiased with respect to linear tests and has size p.
Then we can construct a sample space R C {0,1} of size p which is e-close to
d-wise independent.

Proof. Let by,...,b,, € FY be the basis which generates the linear sample space L. We
denote by B the m x N matrix whose rows are the b;. In terms of d-wise independence
L is perfect, the problem is its size 2™, which we would like to reduce. The idea is that
instead of putting all linear combinations of the basis into the sample space we only
put a well-selected subset of the linear combinations: those ones whose coefficients come
from the sample space S, which is e-unbiased with respect to linear tests. This way we
get a sample space of size only p and as we will see the d-wise independence properties
carry through.

Formally, let S be the multiset of the (column) vectors 74,...,7, € F7* and define
R={rTB:1=1,...,p} to be the multiset of the p linear combinations of the basis
vectors by, ..., b, € FY. We will prove that R is e-unbiased with respect to linear tests of

size at most d and then Corollary 5.4 implies that it is also e-close to d-wise independent.
Let us fix a j-element subset J C [N] of the coordinates for some 7 < d. We need to
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check what is the probability of 0 and 1 in the sample space {rfB-1;:1=1,...,p},
where 1; € FY denotes the characteristic vector of the set J. Since of course

(T?B) . 1J =7T;- (B].J),

we have that Pricp(ri - (Bly) = a] = Pri[(rf B) - 1; = o] for a = 0,1. Applying that
S is e-unbiased with respect to linear tests, with the test vector B1; € F*, we conclude
that

|Pr [(T‘;TB) -1y = O] —Pr [(T;TB) 1y = 1} | = |Pr[r; - (Bl;) = 0]—Pr[r; - (Bl;) =1]| <e.

U

Now we can finish the proof of Theorem 5.3 easily by using Lemma 5.5.1 with the
almost independent independent sample spaces of Proposition 5.5 and the d-wise inde-
pendent sample spaces of Theorem 5.1

First construct a d-wise independent linear sample space L C {0, 1} of size Piarannl

Then, after choosing a prime p between + ) and its double, construct the sample
space S = B?, C {0,1}* with m = tu +1, Wthh is e-close to independent by Proposi-
tion 5.5. Now Lemma 5.5.1 concludes the proof O

Better Ramsey-graphs

Let us now try to use our sample spaces from Theorem 5.3 which are e-close to d-wise
independent in our quest for explicit Ramsey graphs.

We could again take our constructive sample space, like we did earlier, interpret it
as graphs on N = (7) vertices and take the Abbott product of all of them. But in fact,
since our sample space is now so small, we can do even better. We can return to the
original idea of the Abbott construction: checking for the perfect ”starter graph” with
brute force in polynomial time, and then taking the Abbott-powers of this single graph
with good Ramsey properties.

Our goal in this section is the construction of a graph G on n vertices in time polyno-

mial in n with w(G), a(G) < 2veenleeleen Ip the solitude of your home you should check

that it is equivalent to constructing a k-Ramsey graph with km vertices. Recall
that this will be a further improvement in the line of our constructive lower bounds: the
exponent of the order of the construction in Subsection 5.1.2 was twice iterated loga-
rithm and now we have essentially a single log k in the exponent (disregarding the lower
order (loglogk)? in the denominator.)

This construction was apparently folklore, here we follow the description of Baraz.
Let us fix the number of vertices n and define the integer k = 2vIe”,

We aim to find our ”"good starter” graph H on k vertices. What is special about the
selection of k. We will see that on the one hand we can choose a sample space of size
polynomial in n of graphs on k vertices, which y-close to d-wise independent, where 7 is
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small enough and d is large enough. On the other hand it is possible to check for small
enough cliques on k vertices.

k

2

We take a sample space S C {0, 1}( ) which is 275°6*_close to being 4.5 log” k-wise
independent. By Theorem 5.3 there exists such a space of size

~ 20.25 log? £2101°8" ¥ 1og? (2

k) _ ;Ologk) — po1),
i.e., the size of this space is polynomial in 7.

Note that for any graph on k vertices we can check, just by brute force, whether the
clique number and the independence number of it is at most 3logk, in time

k 3logk _ Ollogk) _ nO(l),
3logk 2

which is polynomial in n.

Hence in polynomial time we can check for each member of this sample space, whether
its clique number and independence number is at most 3log k. What is left to prove is
that in S, there exist such a graph. This follows from the almost d-wise independence
of the space. Fix a subset L of the vertices, |L| = 3log k. Then by the almost 4.5 log® k-
independence of the sample space,

. . . 1 1 1

Pr[L is a clique or independent set] =2 - o~ t | <
2( 2) 95log® k ( )
3logk

That is there ezists a member of the sample space S for which no set of size 3logk is
a clique or an independent set. This will be our starter graph H and our brute force
search will certainly find it in polynomial time in n.

Now take the ,/Iognth Abbott-power of H. This product graph has kve™ = n
vertices and can be constructed in time polynomial in n (Exercise 5.5). By (5.1), its
clique number and independence numnber is certainly upper bounded by

(3 ].Og k)\/m = (3, /]_og n)\/@ — 2\/@10g10gn(%+101;1€02n .

The extra factor in the exponent is smaller than 1 for large enough n and hence we are
done.

Note however a crucial difference in the construction of this last example and the
rest of this section. When we took the Abbott-product of all graphs in Subsection 5.1.1
or when we took the Abbott-product of all graphs from the d-wise independent sample
space in Subsection 5.1.2 we were not only constructing the adjacancy matrix of the
graph in time polynomial in n, but were able to answer a query quickly requesting the
adjacency relation of two particular vertices. The query containing the labels of the two
vertices in question has only 2 log n bits, so one would possibly want to have the answer in
time polynomial in logn. This is possible in those constructions as the Abbott-product
is efficient in this sense (see Exercise 5.5).



100 Chapter 5. The symmetric Ramsey-problem

In our current construction one needs to construct the starter graph first before
being able to answer adjacency queries about its Abbott-power and this alone already
takes time polynomial in 7, and not in logn. This explains the following definition. A
construction of a graph on n vertices is called strongly ezplicit if adjacency queries can
be answered in time polynomial in logn. A construction of a graph on n vertices is
called weakly explicit if the adjacency matrix of the graph can be constructed in time
polynomial in n.

One could suspect that the ”"definition” or rather "feeling” of explicit construction
a’la Erdés would be closer to the definition of the strongly explicit one above. However
there is an important ”philosophical” distinction. At the time Erdés posed his question
about a “constructive” lower bound for the Ramsey function, the computer scientific
notion of “efficient” was just about to be created. Erddés refused to pay his award to
Peter Frankl, who came up to him with the Abbott product construction. His refusal was
not based on a mathematically founded argument, rather by a philosophically motivated
one. “I don’t know what a construction is, but I will know when [ see one and this
is not it” he might have said. The motivation behind his original question was rather
the desire to see disorder in an understandable fashion. Erddés would not care about
polynomial computability of the adjacency relation; a computer can calculate many
things where the human mind is not able to see anything. On the other hand, he would
also not worry about the adjacency relation in the Paley graph being really computable in
polylogarithmic time, before proclaiming the Paley graph a ”construction”. The Paley
graph is not an explicit construction because of efficient computability, it is explicit
because one looks at it and sees mathematically explainable disorder (should number
theorists finally be able to prove that so).

The best strongly explicit construction by the Abbott-product (from Subsection 5.1.2)
has a twice iterated logarithm in the exponent. In the next section we discuss a surpris-
ingly simple strongly explicit construction, which beats slightly even the weakly explicit
Abbott-type construction above.

The following exercise is good preparation for that. It was the first real breakthrough
over the quadratic constructive lower bound of the Turdn graph and it came in the same
year (1972) as the Abbott-product. Nagy defined an infinite sequence of k-Ramsey graphs
on ©(k®) vertices. Let G be the graph with V(G) = (), and A ~ Bif |[An B| = 1.
The proof of correctness of the construction, i.e. that they don’t contain large clique and
independent set, is a beautiful application of the Linear Algebra Method.

Exercise 5.9 Prove that the graph of Nagy contains no cligue and no independent set
of order k + 1. (Hint for a proof via linear algebra: Prove that set of character-
istic vectors of an independent set (or a clique) is linearly independent over an
appropriately chosen field. Hint for a combinatorial proof: there is one.)
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5.2 The construction of Frankl and Wilson

In 1977 Frankl extended the construction of Nagy using the theory of sunflowers to
log k
loglog k

obtain a constructive superpolynomial lower bound k%), with f(k) = Q ( ) — 00.

Later Frankl and Wilson (1981) gave a simpler proof through the linear algebra method.
This is what we will discuss here. Let p be a prime and define the graph G by

3
V(G) = (pgp—]l)’ A and B are adjacent if |[ANB| = -1 (mod p).

Observe that for p = 2 we get back Nagy’s construction with £ = 8.

Theorem 5.6 Graph G contains no cliqgue and no independent set of size
p—1 3
> (%)
: 1
=0

Provided that the theorem holds, we have a ~ p**-Ramsey graph on ~ pP” vertices.

Exercise 5.10 Check (precisely!) that for every k we have a k-Ramsey graph with
kﬂ(blgolgc’gk) vertices.

The proof of Theorem 5.6 is again a wonderful application of the linear algebra
method, which goes one step further than the proof of the theorem of Nagy. Now
characteristic vectors do not suffice; we need a simple technical lemma about function
spaces. Let F be a field and Q C F™. Then the set F = {f : Q — F} of functions is a
vector space over F'.

Lemma 5.6.1 If fi,..., fm € F® and vq,...,v,, € Q such that
o fi(v;) #0, and
o fi(v;) =0 for all j <1,

then fi,..., fm are linearly independent in F.

Proof. (of Lemma 5.6.1) Suppose A1 fi1 + -+ Anfm = 0, and let j be the smallest index
J with A; # 0. Substituting v; into this function equation we have

A fi(vy) + o Ao fima () + A fi(vs) + A fia(vs) + o + A fm(vy) = 0,
)T )T/ )

=0, since \; = 0,1 < J #0 =0, since f;(v;) =0, 7 <1

a contradiction. O
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Proof. (of Theorem 5.6) For a set A € 2/7°’! let v, € {0,1}”° be the characteristic vector
of A. The linear algebra method is based on a simple, but crucial identity connecting
the size of the intersection of two sets to the inner product of their characteristic vectors,
namely that |AN B| = (v, UB).

Independent sets. Let A;,..., A, be an independent set in G, so |A; N A;| Z —1 (mod p)
for every 1 # j. For each 1 let v; = v4, be the characteristic vector of A;. Our plan is
to define a function f; : {0, 1}1"3 — I, for every 1 = 1,...s, prove that they are linearly
independent and bound the dimension of the vector space they span — giving us an

upper bound on s. Let
p—2

file) = [ [ (=, w) - 1),
1=0

for all . Obviously we have fi(v;) # 0, since |A;] = —1 (mod p). On the other hand,
we have f;(v;) = 0 for all J # 1, since {Al, ..., A} is an independent set. Our technical
lemma then implies that fl, cee, fs are 1111ear1y independent. The dimension of the space
these functions span could be quite large, since each variable z;, j = 1,...,p* could ap-
pear with powers ranging from 0 to p—1. To reduce the dimension of the space, we apply
a “multilinearization trick” and define f,(z) from fz(a:) by replacmg each occurrence of
a large power ! (I > 1) with z;. Observe that f; = f; on {0,1}#°. Since all the f; are
multilinear polynomials, the dimension of the space spanned by them is the number of
monomials of degree at most p — 1,

3 3
1+p3+(192)+--~+(p{1).

Cliques. To bound the clique number of G we proceed similarly, but we will work over
R instead of F,. Let By,..., B; be a clique in G, so |B; N Bj| = —1 (mod p) for every
1#7. Let L={p—1,2p—1,...,p> — p— 1} be the set of possible intersection sizes.
Note that |L| = p — 1. For each 7 let w; = vp, be the characteristic vector of B, and let

= [[«z,w) - 1)

lel

be functions {0, 1}1” — R for all 7. Since |B;| = p*> — 1 ¢ L, we have fl(wz) # 0. On
the other hand, f;(w;) = 0 for all j # i. Lemma ?? then implies that f;,..., f; are
linearly independent. Again, we multilinearize the functions and define f;(z) from f;(z)
by replacing each occurrence of a large power z! (I > 1) with z;. Since |L| = p — 1, all
the f; are multilinear polynomials of degree at most p — 1. Thus the dimension of the
space spanned by them is at most

3 3
1+p3+(p2)+---+(pp_1>.
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Exercise 5.11 The proof of the following theorem is an immediate generalization of
the claim we had about the clique number of the Frankl-Wilson graph. (Think this
over!)

Theorem Let L be a set of integers with |L| = s. Let By,...,B; € 2" be a uniform
L-intersecting famaly, t.e. all |B;| have the same size and |B; N B;| € L for every
i£7. Thent <3 : (7). O
Generalize this statement further to arbitrary L-intersecting famailies, i.e. derive
the same conclusion when the |B;| are not necessarily all equal. (Hint: Select the
functions f; more carefully and use Lemma 5.6.1 in its full power.)

Bipartite Ramsey problem We formulate the Ramsey problem for bipartite graphs.
BR(k,1) = min{n : V subgraph of K, , contains either K} or K;;}.

Here containment of bipartite graphs is understood the natural way, respecting the spec-
ification of the two parts.

Again the most interesting case is the symmetric, when £ = [. The story of bipartite

Ramsey numbers is very similar to ordinary in the sense that we know that BR(k, k) is
exponential by the probabilistic method. Constructively the situation is very different
though: until very recently there was no super-quadratic constructive lower bound. Even
the product construction of Abbott does not have an obvious counterpart in the bipartite
world. There are several construction yielding a quadratic lower bound, like the ones
based on Hadamard matrices. In some sense we know even more: the norm graphs on n
vertices do not contain K4, and one can prove that their complement does not contain
Knl/2+l/t’nl/2+l/t. Selecting t=cln n/ Inlnn we have that there is no Fcnl/z lnn,Cnl/2lon
and no K, i,/ 1ninnne, Where €(c) — 0. Despite having such asymmetric construction,
with much better parameters in the forbidden bi-clique, we cannot go below /n by any
infinite factor for both the bi-clique and the bi-independent set. Very recently B. Barak,
G. Kindler, R. Shaltiel, B. Sudakov and A. Wigderson (Simulating Independence: New
Constructions of Condensers, Ramsey Graphs, Dispersers and Extractors, Proc. of the
37-th ACM STOC (2005), 1-10.) broke through the constructive quadratic barrier and
exhibited a constructive lower bound of k* on BR(k, k) for arbitrary ¢.
Even more recently even the Frankl-Wilson barrier for bipartite graphs was broken,
but only with a weakly explicit construction. (B. Barak, A. Rao, R. Shaltiel, and A.
Wigderson (2-source dispersers for sub-polynomial ebtropy and Ramsey graphs beating
the Frankl-Wilson construction, Proc. of the 38-th ACM STOC (2006), to appear)
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A.5 Basic Properties of Characters

Let H be a finite abelian group. For the sake of the this exposition we mostly write the
group operation additively (denoted by +), however later we will also use characters of
multiplicative groups and even mix the two.

The homomorphisms of (H, +) into the multiplicative group (C*,-) of the complex
numbers are called characters of H. Formally, x : H — C* is a character of H if

x(a + b) = x(a)x(b) for every a,b € H.
The principal character x, is defined by
X,(a) =1, for every a € H,

and exists for arbitrary group H.

Another important example is the quadratic residue character p, of the multiplica-
tive group (I}, ) of a finite field: p,(z) = 1 whenever z € F} is a quadratic residue and
pe(z) = —1 otherwise. The map p, is a homomorphism because as we saw earlier in
Appendix A.2, a square times a square or a non-square times a non-square is a square,
while a square times a non-square is a non-square.

The fact that the quadratic residue character has only values 1 and —1 is not an
accident: all character values must be some root of unity.

Exercise A.2 Prove that

e x(a) is a |H["* root of unity.

o x(—a) = x(a)™! = x(a)
The values of any non-principal character sum up to 0.

Proposition A.26 For any character x # X,,

Z x(a) = 0.

acH

Proof. Let b € H be such that x(b) # 1; such an element b exists since x is not principal.
Then, using that a — a + b is a bijection from H to H, we have that

> x@) =) x(a+b) =D x(a)x(b).

Then the claim follows. O

Let H be the set of characters. It will turn out that H has exactly |H| characters.
Even more, there is a natural group structure on H and the two groups are isomorphic.



154 Appendix A. Appendix

Proposition A.27 H is an abelian group with the operation -, defined by

(x - ¥)(a) :== x(a)y(a).
Proof. Exercise. O

The group H and its group of characters are isomorphic.
Theorem A.28 H = H.

Proof. We establish the proof in two steps. First we explicitely give the characters of the
cyclic group (Zy, +).

Proposition A.29 Let w be an arbitrary primitive nt* root of unity (i.e. w' =1 if and
only if n|t) and define the map X, : Zn, — C* by x,(a) := w?®. Then

® X, is a character for every j € Zy.
e the mapping sending j € Z, to x; € 7o is an isomorphism between Z, and Z,.

Proof. The first statement follows easily from the definition: x;(a + b) = wilet?) =

ww?® = x;(a)x;(b).
For the second statement let us see first that the mapping is a homomorphism from
(Zn,+) to (Zn,-). Indeed, j + £ € Z, is mapped to Xx;i¢ = X, - X¢- The mapping is
injective, since x;(1) = x,(1) would mean that w’=¢ = 1 and since w is primitive, we
have n dividing 7 — £, so 7 = £. Let us see finally that the mapping is surjective. Let
X be an arbitrary character of (Z,,+). Since x(1) is an nth root of unity by Exercise
. and w is primitive, there is a 7, such that x(1) = w’. Then, since x is a character,
x(a) = x(L+---+1) = x(1)* = w® = x;(a) for every a € Z,, so x is identical to ;.
O

Secondly we show how to obtain the characters of a direct sum from the characters
of its summands.

Proposition A.30 If H = H, x H,, then H >~ H, x H,

Proof. Exercise O

To conclude the proof of Theorem A.28 note that any finite abelian group is the direct
product of cyclic groups, hence by the previous two proposition

112

H%Zslx---stT%ZslxmesT H.

0
k

—N— IS
Example Let H = 7Z, x --- x Z,. Then H = {x, : w € {0, 1}*}, where x(a) = (-1)**
and w-a = Zle w;a; 1s the usual scalar product of vectors.
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Inner product and orthonormal basis

CH := {f : H — C} is an n-dimensional linear space over C. We define an inner product
on CH:

(f,9) = % > f(a)g(a).

acH

Corollary A.31 (First orthogonality relation) For any x,% € H,
1 if x=
R i

0 otherwise.

Proof. Exercise. 0J

Corollary A.32 H forms an orthonormal basis in CH.

Discrete Fourier transform

Corollary A.33 Every f € CH can be written uniquely as the linear combination of

characters:
f — Z CxX’

xcH

where c, = (¥, f) are called the Fourier coefficients of f.

Proof. By the previous Corollary the characters form an orthonormal basis in C¥, so we
can express f uniquely as their linear combination f = ) ¢, x with ¢, € C. Taking the
inner product of both sides with any fixed character % from the left, we see by the first
orthogonality relation that all terms cancel except (9, f) and cy. O

Definition: The Fourier transform of f : H — C is a function f : H — C, defined by

Ffx) =nc, => x(a)f(a).

a€G

The following formula of the Inverse Fourier transform:

1.
f= Z C X = Z —foOx.
XEH XEH
Quasi-randomness of Cayley-graphs
For a subset S C H let us define
&(S) = max{|H|Ts(x) : x € H,X # Xo}-

Just to have an idea about how large ®(S) is let us calculate an upper bound (why
is it that??): |H|1s(xo0) = \Hh—l}!' > scs Xo(s) =|8|. For a lower bound see the following
small Claim
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Claim 8
(S) > /152,

provided |S| < %.

Let now S C H be a subset such that S = —S. The Cayley graph G = G(H, S) is
defined on the vertex set V(G) = H. Two vertices u,v € V are adjacent if v — u € S.
In other words, the neighborhood of each vertex w € H is the set w + S and thus the
Cayley graph is d-regular with d = |S]|.

Exercise A.3 Give a proof of the following on the language of characters:
Let (H,+) be an abelian group and S be a subset, such that S = —S. Let G be the
corresponding Cayley graph. For any subsets B,C C V(G),

e(B,C) - |B||c|% < (5)/[B]IC].

Solution:
The following theorem shows that the closer $(S) is to the lower bound of the Claim
the stronger pseudorandom properties the corresponding Cayley graph exhibits.

Theorem A.34 For any subsets B,C C V(G(S)),

e(B,C) - |B||c|% < &(5)/[BIC],

where e(B,C) denotes the number of ordered pairs (u,v) € B x C, such that uv €
E(G(5))-

Proof.

e(B,C) = ZZZH{O}(U+S —v)

u€EB veC sES

= >33 To(x(u+s—v)

u€EB veEC seS Xef__}

- Y YT Y |—;|x(U)x(S)x(—v)

XEE’ uEB veEC sES

= 3 (Y x(@)

S R DR DRONL(HCH D DPO)
xEx0 uEB ze-C

On the one hand |(|H|1s(x))| < ¥(S).
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On the other hand by the Cauchy-Schwartz-inequality

DO x@)O x@)] < DD x| x(z)

X7£Xo u€B z€—C X#£Xo |u€B z€-C

< 2|2 x)|| 2 x(@)

< Y (Z x(u)> > (Z x(Z)>
\XEPAI ueB \xelfl ze—C

< X (1H1E00) | (IHAe(0)
\ foI \ foI

< \H\\/HBJB ﬂc, 1 ¢)

< |B

- \/ |H| \/ \H

< |H|\V|BIVIC|

and the theorem follows. O

The following is an easy corollary.
Corollary A.35 Let G = G(H, S) be a Cayley graph. Then
®(S)1H|

S|

Proof. Let I be an independent set of maximum size, that is |[/| = a(G). By Theorem A.34
we have that

a(G) <

e(I,I)— |I|2“H" < ®(9)|1|.

Since e(I,I) = 0, we have |I|2“§“ < $(9)|I|, which implies the statement. O
The following simple proposition shows that in fact we already proved Theorem A.34
and Corollary A.35 in the previous section.

Proposition A.36 The spectrum of the Cayley graph G(H, S) s the n-element multiset
{Dosesx(8) i x € H} ={|H|1s(x) : x € H}. The eigenvectors are the n characters.
In particular, the eigenvectors do not depend on S.

Proof.

(Ax)= Y. => x(v+s) (Zx 8)> x(v).

wEGw—vES seS seS
Hence x is indeed an eigenvector with eigenvalue ) . x(s) O
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Character sum estimates

The following famous theorem of Weil states that the values of a polynomial substituted
into a non-principal character behave uniformly (in some weak sense) .

Theorem A.37 (Weil) Let g be a prime power and let x be a multiplicative character
of F; of order d, extended to Fy by x(0) = 0. Then for any polynomial f(z) € F,[z]
which has precisely m distinct zeros and is not a dth power (over the algebraic
closure) we have

> x(f(@)] < (m-1)va.

z€lFy

Note that Proposition A.26 is a special case of Weil’s theorem for f(z) = z.

In light of how hard it is to estimate the sum of characters (Weil’s theorems about
various character sums are highly non-trivial), it is refreshing to see the simple proof of
the following precise formula involving the additive and multiplicative charecters of a
finite field together.

Theorem A.38 (Gaussian sums) Let F be a finite field and let x be a character of
the additive group of IF, while let ¢ be a character of the multiplicative group of F.

Then
‘F’_l if X = Xo and ¥ = 1
_J 0 if X = Xo and P #
C@ZMX(CWC) =1 if X % Xo and ¥ = o

VIFl i X # Xo and ¥ # 9o,

where xo 15 the pricipal additive character and v, s the prinicipal multiplicatice
character.

Proof. In fact the whole proof is just applying Proposition A.26 over and over again; the
first three cases being quite straightforward. To appply Proposition A.26 for the fourth
case, we need a couple of simple manipulations.

> x(@w(E)| = (ZX(CW(C)) <ZX(C)1/)(C))
C+£0 C#0 C#0
= 3 3 x@wE)XCH(C) + > x(C)(C)x(C)%(C)
C+£0 D£C,0 C#£0
= YY" x(C- D (%) + 37 (@) W(C)P
C+#0 D£C,0 C#£0

Each character value is a root of unity, thus its norm is 1 implying that the second term
consits of sum of 1s and thus equal to |F| — 1. To manipulate the first term we change
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variables.

> Y xe-ow(g) = ¥ o -mww)
C#0 D£C,0 W£0,1 D£0
= 3Dy W)
W#0,1
=1

The next to last ineaquality follows from Proposition A.26 since for a fixed W # 1 the
values D(W — 1) run through the nonzero elements of F, while D runs through the
nonzero elements of F. The last inequality also follows from Proposition A.26; this time
employed for the multiplicative character .

OJ



