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By Jensen’s inequality we infer

2n( (2G)> < nd(G)(n —1)*® +2(n — n,

implying
2(n—1)
d(G)
If d(G) < (n — 1)%3, then we are done. Otherwise by the above we have

dG)—1<(n—1)*°+

d(G) < (n -1+ % +1< (-1 +2(n—1)"3 41,

Hence, with e(G) = nd(G)/2 we concluded the proof of

1 1
ex(n, Ks3) < §n5/3 +n*3 ¢ e

OJ

Exercise 2.11 Improve the KST-upper-bound a bit. Show that for arbirary s > 3, we
3

have ex(n, K3 ;) S Y52n5/3.

Exercise 2.12 Generalize the proof above and show that ex(n,Kaa) < in”/*. (Hint:

Instead of lower bounding Y (%) in terms of (3 x:)® (which follows from the con-

vexity of (g)) you maght want to bound it from below in terms of the product of

> (%) and Y- z;.)

Open Problem. The asymptotics of K3, is not known for any s > 3. There are infinitely
many values of s for which the upper and lower bounds are within a constant factor of
/2 of each other (we will discuss these results later), but there are also infinitely many
values s where this constant factor separation is /s — 2.

Any improvement would be very interesting. The value of ez(n, K3,4) is the first unknown.

2.3 Forbidding K; ;)

So far in all we've seen on the front of dense K; ,-free constructions, the smaller of the
parameters £ and s was at most 3. So what does become so hard when £ and s are both
at least 4?7 Phrasing it mysteriously, besides us being not creative enough, the problem
is that 4 =2 + 2.

Typical K; ,-free constructions live in the ¢-dimensional space (over a finite field). The
vertex set is usually chosen to be the space itself, and the neighborhood of each vertex
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is defined by a surface. On the one hand, one has to prove that the surfaces contain the
appropriate number, ~ p' !, of points; this is sometimes easier, sometimes harder, but it
can always be done. On the other hand, one must also show that the intersection of any
t of the selected p* surfaces contains at most s — 1 points. The exercises leading up to
this section tried to demonstrate that this is the more problematic issue, and in fact the
most critical point is to show that these {-wise intersections contain only finitely many
points. Then it is usually only a bonus that one is able to bound this finite number (by
t—1, or s—1, whatever s was in the particular problem). In the exercises we investigated
promising constructions, which broke down in a strong way: we found complete bipartite
graphs whose order tended to infinity with the order of the graph.

When one takes ¢ “average” surfaces in ¢-space one expects that their intersection is
0-dimensional (finite). However, experience shows that for ¢ > 4 it is hard to select p*
surfaces in the ¢-dimensional space such that any ¢ of them has a 0-dimensional (finite)
intersection.

Part of the problem are degeneracies: a line (or some low degree curve) is part of the
surface. The next exercise demonstrates some more what can occur when we step into
the fourth dimension. It is a prelude for what is coming in the following section.

Exercise 2.13 Let the vertex set of a graph G be IF;*,. Let (a,b,c,d) be adjacent to
(a',b,c,d) if and only if (a +a')(b+b)(c+)(d+d)=1. Prove that G contains a
Kn1/41n1/4.

The problem here arises because the variables could be “separated” from each other;
there are four of them and 4 = 2 + 2, each pair is responsible for a curve, and these
create the large complete bipartite graph. This difficulty is overcome in the next section
by introducing much-much higher degree in the equation, but still keeping the simple
structure of the equation in the exercise. The key to this is the existence of the Frobenius
automorphism. If the characteristic of a field F is g, then the mapping X — X9,
X €T, is an automorphism of I, the Frobenius automorphism. Indeed, the function is
of course a bijection since g and |F*| are relatively prime. The multiplication is clearly
interchangeable with the mapping, while the addition is interchangeable since for any
Z €F, qZ =0, and hence

q

(X +Y) =X+ (‘f)xq—ly+---+ ( 1)qu—1 L Y9= X4y

In the following we will define a sequence of dense K, ,-free graphs for arbitrary t.
Although we are not able to say anything new about ez(n, K:,) when s = t, we will
at least determine its order of magnitude when s is some function of {. Namely, the
norm-graphs, defined in the next section, are K;,i-free and have cn®~'/t edges thus
matching the K6vari-Sés-Turdn upper bound. Later ¢!+ 1 will be improved to (¢ —1)!+1
by a modified construction called the projective norm-graph.
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2.3.1 The norm-graphs

Let g be a prime power and let ¢ be a positive integer. The norm-graph G,: = G is
defined as follows. Let V(G) = Fg, E(G) = {{4,B} : N(A+ B) =1}, where N(:) :
F,t — F, is the norm function'

NA)=A-A%?..... AT — Ale-D)/ (1)

We have |V (G)| = ¢ =: n. For a fixed A € V(G), the number of solutions X to the
equation N(X + A) = 1 is exactly % (Remember, for any o € F in a finite field T,

{z : ' = a}| is either 0 or |F*|/(|F*|,1).) Hence, excluding the possible loops at those
A where N(2A) =1,

1 t_1 1
BG) > 3¢t (L5 —1) > zn* 2,
2 qg—1 2
In the remaining of the section we study why G is K 4111-free. What does the presence
of a K;, in G mean? If a K, is present in G, then there exist D,,..., D; € Fy such that
the system of equations

t—1

(X + Dy)(X? 4 Df)--- (X* +D§:) =1
(X +Do)(X?+Df)--- (X" +D§ ) = 1
: : : (2.5)

1

'+Df7) =1

(X + D)(X?+ DF)- -+ (X4
has s solutions X € F:. Note that here we used the comfortable fact shown above, that
the mapping A — A9 is a field automorphism (the Frobenius automorphism), and thus,
in particular, (A + B)? = A? + BY.

To obtain a bound on the number of solutions we consider a much more general setup.

Lemma 2.8.1 (Key Lemma) Let F be a field, and a;;,b; € F for 1 < 4,7 <'t, such that
Qi ;5 75 Qiyj 7,f ’1;1 # 7;2. Then

(z1 —an)(z2 —a2) -+ (T:—an) = b
(2171 - a21)($2 - a22) s (ZUt - a~2t) = by

: : (2.6)
(1'1 - atl).(fﬂz - at2) s ($t — a'tt) = b

has at most t! solutions in Ft.

1

1The norm of the field extension F, over Fy is the map N; defined on F, by N;(A) = A- A?--. A7
We drop the subscript ! throughout, as it will be apparent from the context. Clearly N is a multiplicative
function: if A,B € Fy then N(AB) = N(A)N(B). From N(A)? = N(A) we infer that N(A) € Fy for
every A € Fu. Indeed, the roots of the polynomial 29 — = are precisely the elements of Fy, and it vanishes
at N(A).
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Remark: 1. The Key Lemma is easily proved when b; = .- = b; = 0. To satisfy the first
equation one must select a factor (m,r(l) - al,r(l)) to be 0. This can be done t ways. Once
the variable z.(1) = air(1) is fixed, one can simplify the remaining ¢ — 1 equations with
the factor (Z,(1) — ir(1)), since air(1) # Gir(1) by the condition of the lemma. We end up
with ¢ — 1 equations of the same kind as in the lemma and can proceed by induction.
2. The statement of the Key Lemma is best possible, which is witnessed by the case
when all b; = 0. Indeed, (@1r(1),.-.,0:n()) is a (distinct) solution for every w € S,.

3. Observe that the scenario is similar to the one we faced during the solution of Ex-
ercise 2.13. There the four equations similar to (2.6) occasionally had ~ |F| solutions.
Nevertheless, according to the Key Lemma, this could only occur if some coordinate of
at least two of the four points agreed. In the setup of the norm-graph the Frobenius
authomorphism helps us to avoid this degeneracy.

Corollary 2.9 For any prime power g and integer t > 1 the norm-graph G,. does not
contain a Kiuni1. In particular

ex(n, Kini1) = © (nz_l/t) )

Proof. Applying the Key Lemma with F = Fg, a;; = —ij_l, T; = X‘lifl, and b; = 1 we
have the ¢! bound on the number of solutions of the system (2.5). To check the condition
of the Key Lemma we recall that the Frobenius automorphism is in particular a bijection,

so for a fixed 5 the —ij_l are all distinct. 0

To get the bound on the number of solutions of system (2.6) of the Key Lemma we
make use of the following standard tool.

Claim 1 Let K be an algebraically closed field, A = Klzy,...,2z, fi,--.,fr € A,
B = K|fi,..., f:], and

FZKt_)Kr) F(iE) = (fl(m):)fr(x))
If A is integral over B and B is integrally closed in QF(B), then for any b € K"
|IF7Yb)| < d:= dimgrs) QF(A).

Proof. Let F~1(b) = {P,..., P,} C K* and choose a polynomial g € A such that g(P;) are
all distinct (this is easy since K is infinite). Let h(y) € QF(B)[y] be the monic minimal
polynomial of g over QF(B). Then q := deg(h) < d, otherwise {1, g, ¢?,...9%} C QF(A)
would be a linearly independent set over QF(B), a contradiction.

The coefficients of A are integral over B, so they are from B (since B is integrally
closed in QF(B)). Why are the coefficients of A integral over B? Since one of its roots,
g is integral, integrality carries over to all its roots and the coeflicients are polynomials
of the roots of h. Indeed, if L is the splitting field of &, then any zero ¢’ € L of h can be
mapped to g by an automorphism of L which fixes QF(B), so the integrality of g over
B implies the integrality of ¢’ over B.
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So there exists coeflicients ci,...c, € B such that
g +ag+...¢c,=0.

If we substitute Py,... P; into this polynomial equation, we obtain s equations over
K.

Note that c;(P;) does not depend on ¢, since F(P;) is constant and B is generated by
the coordinate functions of F'. Let e; = ¢;(B;).

Since g(P,), ..., g(Ps) are distinct solutions to the equation

gi+eg?t+...e,=0,

we have s < g <d. [

Proof. (of the Key Lemma) We naturally set f,(z) = (z; — a;1)(z2 — ai2) - - - (z: — @) and
r =t. By Claim 1 we need to prove

e A= Klz,,...,z is integral over B = K|fi,..., f.| (this implies that A is a finitely
generated B-module, since it is a finitely generated B-algebra),

e B is integrally closed in QF(B), and

Integrality of A over B: We use induction on .
The case ¢t = 1 is trivial: A = K|[z,] = K[z; — ay;] = B.

Let ¢t > 1, and let R > B be an arbitrary valuation ring. Since the integral closure
of B is the intersection of all valuation rings containing it, we are done once we prove
R > A.

Assume z; ¢ R. This implies z; —a;; ¢ Rfor allz =1,...,¢. Then

Em<R fi:e}; g; == fi €m,
Ty — Qgt Ty — Qs
for all 2 =1,...,%, where m is the unique maximal ideal of the valuation ring R.
By induction K|[zi,...,z: ] is integral over K|[gy,...,g: 1], we have

gl,..-,gt_1€R = K[fEl,...,fEt_l]SR.

The polynomials gi,...,9:_1,9: have no common zero, thus by the Nullstellensatz
there are hq,...,h; € K[z1,...,2; 1] such that

t
Z hig; = 1.
=1

This is a contradiction, since the left side is in m (h; € R I!).



50 Chapter 2. Complete Bipartite Graphs

B is integrally closed in QF(B): Since by the above A is integral over B and zy, ..., ; are
algebraically independent over K, we have that fi,..., f; are algebraically independent
over K. Hence B = A and thus is a UFD. The claim now follows since every UFD is
integrally closed in its field of fractions.

Computing the rank: Let m = (f1,..., fi) < B = K|fi,..., fi], note that m is maximal.

Since A is a finitely generated B-module, A, is a finitely generated B,-module, and

therefore A/mA = A,,/mA,, is a finite dimensional B/m = B,,/mB,, = K-vector space.
If Zy,...,Z; € An/mA, is a basis over K, then by Nakayama’s Lemma we get that

zi,...,Ts generate A, over B, and hence z,,...,z, generate QF(A) over QF(B).
Thus dimgp QF(A) < dimx A/mA. Then we have what we want since

Chinese
Remainder

AmASE? Alnm, = P A/m, = PEK,

gESE oESE

where m, := (T1 — G1501), - - -, Tt — Qto(r)) < A is maximal.
So to conclude the proof of the Key Lemma we need to show the following.

Claim 2 Let m, = (Z1 — Q15(1),- - -, Tt — Gio(r)). Then
mA = ﬂ My
oESt

Proof. Obvious.

Let
i fe

- .
[Ti1(zi — aio(s)

The polynomials f;, 2 =1,...t and g,, 0 € S; have no common zero, so there exists
hi,h, € K[zy,...,z:] such that > fih, + > g.h, = 1.

Let g € "m, =[[m,, and let g = > h;fig + > hogsg. We know that > h;f,g € mA,
S0 9,9 € mA (for Vo € S;) would imply g € mA.

Fix a permutation o € S;. We have g = ) g*, where a typical term g* = g’ ][, .g, M~
with ¢’ € A and m, € {z1 — a1-(1),.--, %t — asr»y} for all 7 € S;. In particular let j be
the index for which m, = z; — a;,(;). Then

9o =

filg'g, = 9g'9g,€EmMA = gg, € mA.

Hence we concluded the proof of the Key Lemma. O
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2.3.2 The projective norm-graphs
Even denser K3 3-free graphs — an elementary construction

The graph H = H, 3 is defined as follows. The vertex set V(H) is Fpz x F;. Two distinct
vertices (4,a) and (B,b) € V(H) are connected if and only if N(A + B) = ab, where
N(X) = X' is the norm of X € F,2 over F,. Of course N(X) € F, and it is clear that
V(H)| =¢*—¢* If N(A+X) = az, then (A,a) and X # —A determine z. Thus for any
fixed (4,a) € V(H), there are exactly ¢* — 1 solutions (X, z) to N(A+ X) = az. This
implies that, excluding possible loops, the degree of each vertex is at least g — 2 > n?/3.

We prove that H is Kj3-free and hence provides an improvement (in the second
order term) over Brown’s construction for a dense Kj s-free graph. (The Brown-graph
has In®® — In*? edges for infinitely many values of n.)

Theorem 2.10 The graph H = H,3 contains no subgraph isomorphic to Ks3. Thus
there ezists a constant C such that for every n = q°® — g% where q is a prime power

1 1
ex(n, Ks3) > Eng + gng +C.

Remark: At this point it is worthwhile to recall that the upper bound of Fiiredi (Theo-
rem 2.8) is

wlo
[

1
ex(n,Kz3) < -ns +n +§n.

N | =

Proof. The statement of Theorem 2.10 is a direct consequence of the following.
If (Dy,d;),(Ds,ds),(Ds,ds) are distinct elements of V(H), then the system of equations

N(X +Dy) = zd;
N(X + D) = zd, (2.7)
N(X + D;) = zds

has at most two solutions (X, z) € Fgz x F}.

Observe that if the system has at least one common solution (X, ), then

(1) X # —D,; for any ¢+ = 1,2,3 and

(ir) D; # D; if i # 3.

The latter is true, because if D; = D;, then the presence of a common neighbor
implies d; = dj.

Because of (7) we can divide the first two equations by the last one and get rid of z.
The norm is a multiplicative function, so we obtain

y(EED &
X+Ds) 4

forz=1,2.



52 Chapter 2. Complete Bipartite Graphs

We can divide each equation by N(D; — D), since these are nonzero by (7). Then
we can substitute Y = 1/(X + D3), A; = 1/(D; — D3) and b; = d;/(ds N(D; — D3)) and
obtain the following two equations:

NY +A4;) = (Y+A)YI+ A = b
NY +4,) = (Y+A)(YI+ A = b

Here we used the fact that (A + B)? = A% + B9 for all A, B in F.
We need the following simple special case of our Key Lemma from the previous
section.

(2.8)

Lemma 2.10.1 Let K be a field and a;;,b; € K for 1 < 1,7 < 2 such that ai; # as;.
Then the system of equations

(5131 - 011)(5132 - 0'12) = by,

("El - a21)($2 - a22) = by (2'9)

has at most two solutions (z,,z,) € K>.

Although this is a special case of the Key Lemma (for ¢ = 2) we include an elementary
proof, which does not use any commutative algebra. We note that even for ¢ = 3, we do
not know of any proof of the Key Lemma which is simpler than the one in the previous
section.

Proof. Subtracting the first equation from the second we get

(@11 — @21)T2 + (@12 — @22)T1 + A21G22 — Q1112 = by — by

Here we can express z; in terms of a linear function of z,, since a5 # asy. Substituting
this back into one of the two equations of (2.9) we obtain a quadratic equation in z, with
a non-zero leading coefficient (since a;; # as;). This equation has at most two solutions

in z5 and each one determines z; uniquely. O

In order to finish the proof of Theorem 2.10 we apply Lemma 2.10.1 with z; =Y, 2z, =
Y9 a;1 = —Ai,a15 = —Al and ay = — A, a0 = — AL The conditions of the lemma hold
since —A! = a;5 = asy = —A? would mean A; = A,, which is impossible by (%i). Hence

the system of equations (2.8) has at most two solutions Y. These solutions are in one-
to-one correspondence with the solutions (X, z) of the equations (2.7), so Theorem 2.10
is proved. O

Exercise 2.14 The k-color Ramsey number Ry(G) is the smallest integer m, such that
no matter how the edges of K,, are colored with k colors, there exists a monochro-
matic copy of G.

Show that Ry(Ks3) = (14 o(1))k3.
(Hint: For the lower bound use the projective norm-graphs and the Key Lemma.)
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The general projective norm-graphs

The proof of Theorem 2.10 in the previous subsection is completely elementary. In order
to prove the properties of the projective norm-graphs for ¢ > 3 we need the Key Lemma
for arbitrary t.

Let us define the projective norm-graph H = H,, for any ¢ > 2. The vertex set of
H is Fge-1 x F;. Two distinct vertices (4,a) and (B,b) € V(G) are adjacent if and only
if N(A + B) = ab, where the norm is understood over F,, that is, N(z) = ztet+a7",
Note that |[V(H)| = ¢t — ¢" . If (4,a) and (B, b) are adjacent, then (A,a) and B # —A
determine b. Thus H is almost regular with possible degrees ¢~! — 1 and ¢*~! — 2.
Theorem 2.11 The graph H = H,; contains no subgraph isomorphic to Ky _1y11.

Proof. The proof is a straightforward generalization of the proof of Theorem 2.10 with the
remark that we need to use Lemma 2.8.1 (for ¢ — 1 equations) instead of Lemma 2.10.1.
O

Therefore, the following improvement over the previous section holds.

Corollary 2.12 For every firedt > 2 and s > (t — 1)! + 1 we have
1 1 1
ex(n, K; ;) > §n2’? —O0(n* 79,
where ¢ > 0 1s an absolute constant.

The improvement is most visible for small values of ¢, for example:

Corollary 2.13
ex(n, Ky7) = ©(n™*).

Open Problem. The value of ez(n, K, ) is wide open. The conjecture is of course © (n/*),
but we can’t even separate it from ez(n, K33), that is, we don’t know whether
. ex(n,Kua)
7}1_)11;10 nb/3
Settling this would already be a major advance, even though most experts would be
willing to bet a significant amount of money on that it is true.
Fiiredi’s construction of dense K ,-free graphs (Theorem 2.3) showed that

— 0OQ.

1
lim (lim inf ez(n, K5 )n~%?) = lim sVs—1=oo.
5§—00

5§—00 n—oo

Exercise 2.15 Use the projective norm-graphs together with Firedi’s idea (which im-
proves the K,,-free Construction 2 to a K, s-free construction) to give a K -free
construction whose number of edges comes within a factor </2 + o(1) of the KST
upper bound of ex(n, K3 ;) for every s > 3 of the form s =2r>+ 1, r € Z. (The o(1)
above is understood as s — 00.)

More generally, prove that for any fized t

lim (liminf ez(n, K; )n %) = oo.

§—00 n—oo



