7 — j+ 1. We have to show that IP’(tTH> = (u,v)) = 1

Moore bound for irregular graphs
Recall that we want to prove the following theorem:

Theorem 1. Let G be an n-vertex graph with 6(g) > 2, and with girth g(G) > 2k + 1 and average
degree d = 27’” Then

k=1 _ )
n>1+dS (d-1).
=0

We saw last time that this implies:
Corollary 2. ex(n,{Cs,C4,...,Co;}) < 3 (nH% + n)
Let us now describe the idea of the proof:
Take a random walk, starting at a random vertex:

a) Choose an initial vertex vy at random. To avoid getting stuck in sparse parts of G, choose
vo according to the degree of the vertices, i.e.

P(vg =v) = Z:d(:i]gu) =: 7(v);

b) Choose an edge e uniformly at random from edges at vy and get a new vertex vy;

c¢) Choose a different edge €3 from vy uniformly at random from among all edges at v, except

for e_f and get a new vertex wveo;

d) Repeat until we get a walk of the desired length.

Claim 3. If vy is distributed as w, then for any j > 1, v is also distributed as m and e_j> is uniformly
distributed over ﬁ

Proof. We prove the distribution of e; by induction on j:

j=1: Fix (u,v)eﬁ. We have to show that P(e_f:(u,v)):nig. We have
P& = (u,0)) = P(vo = u A & = (,0)) = Plug = )P = (u,0)[vo = u) = LY L _ 1
1 = ’ — 0 — 1 = ’ — 0 — 1 = ) 0 — _nc{d(U)_ncz

nd’

.H 1
P(eji = (u,0)) = Y Pl = (w,0)e) = €)P(e] =€) = —> Plejr1 = (u,v)|e] =€)
e e

P(ej+1 = (u,0)[e] = (z,u)) = —(d(u) — ”d(u)l—l
zeN (u)\{v}

- &~

The distribution of v; follows from that of e;: P(v; =v) = ) P(e_; = (u,v)) = dv)

Lemma 4. For an arbitrary graph G with minimum degree at least 2, we have

Eymr[ni(v)] > d(d —1)""



Observe how the previous lemma implies the theorem. In an n-vertex graph with girth at least

k
2k + 1, n > > n;(v) for any vertex v. Now if we choose v randomly according to 7 and use linearity
i=0
of expectation, we can conclude that there exists a vertex vy with

k k k—1
D ni(vo) =Y Eni(v)] = 1+d) (d-
i=0 =0 =0

In order to prove the Lemma, we will introduce the concept of Entropy and see some basic prop-
erties.

Entropy

Definition 5. Let X be a discrete random variable, and let p be the probability distribution
function, i.e. p(x) = P(X = x). Then the entropy of X is

H(X) = Ey[—logy(p ZP ) logy p(x

Remark 6. 1. For z =0, we set zlog, z := lim,_,o zlogy x = 0.
2. The entropy depends only on the distribution of the random variable, not on its values.
3. The entropy can be thought of as a measure of uncertainty of the random variable.

4. All logarithms considered in this section are assumed to be base 2.

Examples.

a) If X ~ Bernoulli(p), then H(X) = —plogp — (1 — p) log(1l — p).
This is the so called binary entropy function.

b) If X is the uniform distribution on an n-element set, then H(X) = — " Llogl =logn.

We have the following upper bound on the entropy of a random variable.
Propositions 7. If X is a random variable taking on n values, then H(X) < logn.

Definition 8. Given two random variables X, Y, the joint entropy of X and Y is
H(X,Y) = E;y[—log(p(z,y))]
and the conditional entropy of X given Y is

H(X|Y) = Ey[H(X|{Y = y})] ZP = z|Y = y)logP(X = z|Y = y)].

The link between the joint entropy and the conditional entropy is given by the following proposition.

Propositions 9. If X, Y are two random variables, then
H(X,)Y)=H(Y)+ H(X|Y).
Proof. Homework. O

We are now ready to proof the Lemma 4



Proof. (of Lemma 4) Note that n;(v) is the size of the range of the random variable (€1, €2, ..., €ilvg =
v), for every vertex v € V(G). Hence by the concavity of the log-function and Proposition 7, we have

10g(Epmr[1i(0)]) > Eporllogni(v)] > Epor [H(E1 €5 - . . € v = v)] .
By Proposition 9 and linearity of expectation, this is further equal to
Eyer[H (f]v0 = )] + ZEM [H (] |51, .-, €, v0 = v)]
j=2

The edge e; is chosen uniformly out of d(v) edges, hence by Example (b) we have

= Eyr(logd(v)) + ZEUNW |ej 1,vj-1]

= vaw(logd + ZEUJ 1~7r[10g(d(vj 1) - 1)]
7j=2

= Eyrllog(d(v)(d(v) — 1)’”)]
by deﬁnltlon ofw 1 Zd log d(U) _ 1)i—1)

sz log z(x—1)*—1is convex on z>2

= log(d(d — 1)"1).

—ndlog(d(d — 1)"1)
nd

Hence E,r[n;(v)] > d(d — 1)"~! as the logarithm function is increasing. O

Upper bound on the Turan number of Cy;

Instead of forbidding every cycle of length up to 2k, we now only disallow Co,. We will prove that the
O(n L+ k) can be saved.

Theorem 10. Let k > 2. Then ex(n,Ca) < 8(k — 1)n1+%.

Remark 11. An upper bound of the order n*% was first proved by Bondy and Simonovits. The Proof
we give here is based on Verstraete’s and gives a better constant factor. Later Pikhurko removed the
8 factor and replaced it with (1 + o(1)) and recently Bukh and... gave a constant factor sublinear in
k. However, it is still not known, whether one could remove the k—dependence of the constant factor.

Proof. We may assume k > 3 (for k = 2, that is for ex(n, Cy), we already have proved an upper bound
with a better constant factor).

Given a graph G with 8(k — 1)n1+% edges, we can pass to a bipartite subgraph H C G with minimum
degree greater than 4(k — 1)n%

Pick an arbitrary vertex vg € V', and define

Vii={veV:idy(v,v) =i}

Note that V; is an independet set (H is bipartite) and the neighbourhood of V; is N(V;) = V;_1 U V1.
Let
= mini : e(Vi, Vig) > 206 — 1)|Viga ]},

the smallest index such that the vertex set of Vi1 has a “large” average degree “backwards”. In-
tuitively, if the vertices of some V; have a small average degree “backwards”, then they must have
many edges “forward”, towards V;;1. Now if even ¢ 4+ 1 <[, then V;;1 still send only a small number
of edges “backwards”. These two things: V; sending many edges towards V;11 and V41 sending few
edges back towards V; are only possible if the vertex sets “expand”, that is, if V; 1 is much larger than
V;. This cannot happen many times, since the size is eventually bounded by the number of vertices
n. We formalise this in the next Claim.



Claim 12. [ <k —1.

Proof. For i < | on the one hand we have e(V;, Vit1) < 2(k — 1)|Vi+1]. On the other hand, since
e(Vi_1,V;) < 2(k — 1)|Vj|, using 6(H) > 4(k — 1)n* we also have that e(V;, Vig1) > 4(k — 1)n¥|V;| —
2(k—=1D|Vi| > 2(k — 1)n% |Vi]. These two estimates imply that for every ¢ < [, we have 2(k —1)|Vi41] >
e(Vi, Viy1) > 2(k — 1)n®|Vj| and hence

iJIgl ‘V()‘ _ nﬁ}:l.

\Vig1] > n%]Vi] > n%m_ly >..>n
For i = k — 1 this would give |V}| > n, a contradiction. So k — 1 must be at least . O

Now recall that E(V;,Viy1) > 2(k — 1)|Vi41|. Counting from the other side, [ — 1 <1 and §(H) >

Ak — D)n'tE still implies that e(Vi, Vip1) > 4(k — Dn#|Vi] — 2(k — D)|Vi| > 2(k — D)n' ™% [Vj|. So
the average degree of H[V; U Vii4] is at least 2(k — 1) and consequently there exists a subgraph
Hy C H[V; U V1] with minimum degree §(Hp) > k — 1.
We will build a cycle of length at least 2k in Hy. To do so, let P be a longest path in Hy, and let w
be an endpoint. By maximality of P, N(w) C V(P). Since |N(w)| > §(Hp) > k, and the neighbours
of w are not adjacent on P, the distance of w to its farthest neighbour on P is at least 2k — 1. Adding
this edge to the path closes a cycle of length at least 2k. This cycle then also has a chord, since
|N(w)| > §(Hp) > 3. Call this cycle with a chord K.

We need the following lemma:

Lemma 13. Let K consists of a cycle of length m and a chord, and let ¢ : V(K) — {R, B} be an
improper colouring of its vertices. Then for every I < m, there is a path of length | in K whose
endpoints have different colours.

Proof. Homework. O

Consider now a minimal subtree 77 C H[Vy U Vj U...UV]] that contains the vertex set V(K)NV;.
Let g be the height of T', where 1 < ¢ <. Note that since 6(H) > 3, the root of this tree has degree
at least two.

Choose a branch of the root and colour all its descendants in V(K) NV, red and all others blue. This
gives rise to an improper colouring of K and so, by the above lemma, there is an R — B path of length
2(k — q). The red vertices are all in V; and hence this path must start in Vj. Since its length is even,
it will also end in V;. Now append the two g-paths from the endpoints to the root of 77. Due to the
minimality of 7" these paths are disjoint and hence we obtained a cycle of length 2(k —q) +q+ ¢ = 2k,
finishing the proof.

O

Remark 14. The proof in fact gives cycles of many different even length: just consider all R — B paths
of different length.



