Moore bound for irregular graphs

Recall that we want to prove the following theorem:
Theorem 1. Let G be an n-vertex graph with $\delta(g) \geq 2$, and with girth $g(G) \geq 2 k+1$ and average degree $\bar{d}=\frac{2 m}{n}$. Then

$$
n \geq 1+\bar{d} \sum_{i=0}^{k-1}(\bar{d}-1)^{i} .
$$

We saw last time that this implies:
Corollary 2. $e x\left(n,\left\{C_{3}, C_{4}, \ldots, C_{2 k}\right\}\right) \leq \frac{1}{2}\left(n^{1+\frac{1}{k}}+n\right)$
Let us now describe the idea of the proof:
Take a random walk, starting at a random vertex:
a) Choose an initial vertex v_{0} at random. To avoid getting stuck in sparse parts of G, choose v_{0} according to the degree of the vertices, i.e.

$$
\mathbb{P}\left(v_{0}=v\right)=\frac{d(v)}{\sum_{u} d(u)}=: \pi(v) ;
$$

b) Choose an edge $\overrightarrow{e_{1}}$ uniformly at random from edges at v_{0} and get a new vertex v_{1};
c) Choose a different edge $\overrightarrow{e_{2}}$ from v_{1} uniformly at random from among all edges at v_{1}, except for $\overrightarrow{e_{1}}$ and get a new vertex v_{2};
d) Repeat until we get a walk of the desired length.

Claim 3. If v_{0} is distributed as π, then for any $j \geq 1, v_{j}$ is also distributed as π and $\overrightarrow{e_{j}}$ is uniformly distributed over \vec{E}.

Proof. We prove the distribution of e_{j} by induction on j :
$j=1$: Fix $(u, v) \in \vec{E}$. We have to show that $\mathbb{P}\left(\overrightarrow{e_{1}}=(u, v)\right)=\frac{1}{n d}$. We have

$$
\mathbb{P}\left(\overrightarrow{e_{1}}=(u, v)\right)=\mathbb{P}\left(v_{0}=u \wedge \overrightarrow{e_{1}}=(u, v)\right)=\mathbb{P}\left(v_{0}=u\right) \mathbb{P}\left(\overrightarrow{e_{1}}=(u, v) \mid v_{0}=u\right)=\frac{d(u)}{n \bar{d}} \frac{1}{d(u)}=\frac{1}{n \bar{d}} .
$$

$j \rightarrow j+1$: We have to show that $\mathbb{P}\left(\overrightarrow{e_{j+1}}=(u, v)\right)=\frac{1}{n d}$.

$$
\begin{aligned}
\mathbb{P}\left(\overrightarrow{e_{j+1}}=(u, v)\right) & =\sum_{\vec{e}} \mathbb{P}\left(\overrightarrow{e_{j+1}}=(u, v) \mid \overrightarrow{e_{j}}=\vec{e}\right) \mathbb{P}\left(\overrightarrow{e_{j}}=\vec{e}\right) \stackrel{I \cdot H \cdot}{=} \frac{1}{n \bar{d}} \sum_{\vec{e}} \mathbb{P}\left(\overrightarrow{e_{j+1}}=(u, v) \mid \overrightarrow{e_{j}}=\vec{e}\right) \\
& =\frac{1}{n \bar{d}} \sum_{x \in N(u) \backslash\{v\}} \mathbb{P}\left(\overrightarrow{e_{j+1}}=(u, v) \mid \overrightarrow{e_{j}}=(x, u)\right)=\frac{1}{n \bar{d}}(d(u)-1) \frac{1}{d(u)-1} \\
& =\frac{1}{n \bar{d}} .
\end{aligned}
$$

The distribution of v_{j} follows from that of $e_{j}: \mathbb{P}\left(v_{j}=v\right)=\sum_{u \in N(v)} \mathbb{P}\left(\overrightarrow{e_{j}}=(u, v)\right)=\frac{d(v)}{n d}$.

Lemma 4. For an arbitrary graph G with minimum degree at least 2 , we have

$$
\mathbb{E}_{v \sim \pi}\left[n_{i}(v)\right] \geq \bar{d}(\bar{d}-1)^{i-1}
$$

Observe how the previous lemma implies the theorem. In an n-vertex graph with girth at least $2 k+1, n \geq \sum_{i=0}^{k} n_{i}(v)$ for any vertex v. Now if we choose v randomly according to π and use linearity of expectation, we can conclude that there exists a vertex v_{0} with

$$
\sum_{i=0}^{k} n_{i}\left(v_{0}\right) \geq \sum_{i=0}^{k} \mathbb{E}\left[n_{i}(v)\right] \geq 1+\bar{d} \sum_{i=0}^{k-1}(\bar{d}-1)^{i} .
$$

In order to prove the Lemma, we will introduce the concept of Entropy and see some basic properties.

Entropy

Definition 5. Let X be a discrete random variable, and let p be the probability distribution function, i.e. $p(x)=\mathbb{P}(X=x)$. Then the entropy of X is

$$
H(X)=\mathbb{E}_{x}\left[-\log _{2}(p(x))\right]=-\sum_{x} p(x) \log _{2} p(x)
$$

Remark 6. 1. For $z=0$, we set $z \log _{2} z:=\lim _{x \rightarrow 0} x \log _{2} x=0$.
2. The entropy depends only on the distribution of the random variable, not on its values.
3. The entropy can be thought of as a measure of uncertainty of the random variable.
4. All logarithms considered in this section are assumed to be base 2 .

Examples.

a) If $X \sim \operatorname{Bernoulli}(p)$, then $H(X)=-p \log p-(1-p) \log (1-p)$. This is the so called binary entropy function.
b) If X is the uniform distribution on an n-element set, then $H(X)=-\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n}=\log n$.

We have the following upper bound on the entropy of a random variable.
Propositions 7. If X is a random variable taking on n values, then $H(X) \leq \log n$.
Definition 8. Given two random variables X, Y, the joint entropy of X and Y is

$$
H(X, Y)=\mathbb{E}_{x, y}[-\log (p(x, y))]
$$

and the conditional entropy of X given Y is

$$
H(X \mid Y):=\mathbb{E}_{y}[H(X \mid\{Y=y\})]=\mathbb{E}_{y}\left[-\sum_{x} \mathbb{P}(X=x \mid Y=y) \log \mathbb{P}(X=x \mid Y=y)\right] .
$$

The link between the joint entropy and the conditional entropy is given by the following proposition.
Propositions 9. If X, Y are two random variables, then

$$
H(X, Y)=H(Y)+H(X \mid Y) .
$$

Proof. Homework.
We are now ready to proof the Lemma 4

Proof. (of Lemma 4) Note that $n_{i}(v)$ is the size of the range of the random variable $\left(\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{i} \mid v_{0}=\right.$ v), for every vertex $v \in V(G)$. Hence by the concavity of the log-function and Proposition 7, we have

$$
\log \left(\mathbb{E}_{v \sim \pi}\left[n_{i}(v)\right]\right) \geq \mathbb{E}_{v \sim \pi}\left[\log n_{i}(v)\right] \geq \mathbb{E}_{v \sim \pi}\left[H\left(\overrightarrow{e_{1}} \overrightarrow{e_{2}} \ldots \overrightarrow{e_{i}} \mid v_{0}=v\right)\right] .
$$

By Proposition 9 and linearity of expectation, this is further equal to

$$
\mathbb{E}_{v \sim \pi}\left[H\left(\overrightarrow{e_{1}} \mid v_{0}=v\right)\right]+\sum_{j=2}^{i} \mathbb{E}_{v \sim \pi}\left[H\left(\overrightarrow{e_{j}} \mid \overrightarrow{e_{j-1}}, \ldots, \overrightarrow{e_{0}}, v_{0}=v\right)\right]
$$

The edge e_{1} is chosen uniformly out of $d(v)$ edges, hence by Example (b) we have

$$
\begin{aligned}
& =\mathbb{E}_{v \sim \pi}(\log d(v))+\sum_{j=2}^{i} \mathbb{E}_{v \sim \pi}\left[H\left(\overrightarrow{e_{j}} \mid \overrightarrow{e_{j-1}}, v_{j-1}\right]\right. \\
& =\mathbb{E}_{v \sim \pi}(\log d(v))+\sum_{j=2}^{i} \mathbb{E}_{v_{j-1} \sim \pi}\left[\log \left(d\left(v_{j-1}\right)-1\right)\right] \\
& =\mathbb{E}_{v \sim \pi}\left[\log \left(d(v)(d(v)-1)^{i-1}\right)\right] \\
& \text { by definition of } \pi \frac{1}{n \bar{d}} \sum_{v} d(v) \log \left(d(v)(d(v)-1)^{i-1}\right) \\
& \qquad \begin{array}{l}
x \mapsto x \log x(x-1)^{i}-1 \text { is convex on } x \geq 2 \\
\geq
\end{array} \frac{1}{n \bar{d}} n \bar{d} \log \left(\bar{d}(\bar{d}-1)^{i-1}\right) \\
& =\log \left(\bar{d}(\bar{d}-1)^{i-1}\right) .
\end{aligned}
$$

Hence $\mathbb{E}_{x \sim \pi}\left[n_{i}(v)\right] \geq \bar{d}(\bar{d}-1)^{i-1}$ as the logarithm function is increasing.

Upper bound on the Turán number of $C_{2 k}$

Instead of forbidding every cycle of length up to $2 k$, we now only disallow $C_{2 k}$. We will prove that the $\Theta\left(n^{1+\frac{1}{k}}\right)$ can be saved.
Theorem 10. Let $k \geq 2$. Then $e x\left(n, C_{2 k}\right) \leq 8(k-1) n^{1+\frac{1}{k}}$.
Remark 11. An upper bound of the order $n^{1+\frac{1}{k}}$ was first proved by Bondy and Simonovits. The Proof we give here is based on Verstraete's and gives a better constant factor. Later Pikhurko removed the 8 factor and replaced it with $(1+o(1))$ and recently Bukh and... gave a constant factor sublinear in k. However, it is still not known, whether one could remove the k-dependence of the constant factor.

Proof. We may assume $k \geq 3$ (for $k=2$, that is for $\operatorname{ex}\left(n, C_{4}\right)$, we already have proved an upper bound with a better constant factor).
Given a graph G with $8(k-1) n^{1+\frac{1}{k}}$ edges, we can pass to a bipartite subgraph $H \subseteq G$ with minimum degree greater than $4(k-1) n^{\frac{1}{k}}$.
Pick an arbitrary vertex $v_{0} \in V$, and define

$$
V_{i}:=\left\{v \in V: d_{H}\left(v_{0}, v\right)=i\right\}
$$

Note that V_{i} is an independet set (H is bipartite) and the neighbourhood of V_{i} is $N\left(V_{i}\right)=V_{i-1} \cup V_{i+1}$. Let

$$
l=\min \left\{i: e\left(V_{i}, V_{i+1}\right) \geq 2(k-1)\left|V_{i+1}\right|\right\},
$$

the smallest index such that the vertex set of V_{l+1} has a "large" average degree "backwards". Intuitively, if the vertices of some V_{i} have a small average degree "backwards", then they must have many edges "forward", towards V_{i+1}. Now if even $i+1 \leq l$, then V_{i+1} still send only a small number of edges "backwards". These two things: V_{i} sending many edges towards V_{i+1} and V_{i+1} sending few edges back towards V_{i} are only possible if the vertex sets "expand", that is, if V_{i+1} is much larger than V_{i}. This cannot happen many times, since the size is eventually bounded by the number of vertices n. We formalise this in the next Claim.

Claim 12. $l \leq k-1$.
Proof. For $i<l$ on the one hand we have $e\left(V_{i}, V_{i+1}\right)<2(k-1)\left|V_{i+1}\right|$. On the other hand, since $e\left(V_{i-1}, V_{i}\right)<2(k-1)\left|V_{i}\right|$, using $\delta(H)>4(k-1) n^{\frac{1}{k}}$ we also have that $e\left(V_{i}, V_{i+1}\right)>4(k-1) n^{\frac{1}{k}}\left|V_{i}\right|-$ $2(k-1)\left|V_{i}\right| \geq 2(k-1) n^{\frac{1}{k}}\left|V_{i}\right|$. These two estimates imply that for every $i<l$, we have $2(k-1)\left|V_{i+1}\right|>$ $e\left(V_{i}, V_{i+1}\right)>2(k-1) n^{\frac{1}{k}}\left|V_{i}\right|$ and hence

$$
\left|V_{i+1}\right|>n^{\frac{1}{k}}\left|V_{i}\right|>n^{\frac{2}{k}}\left|V_{i-1}\right|>\ldots>n^{\frac{i+1}{k}}\left|V_{0}\right|=n^{\frac{i+1}{k}}
$$

For $i=k-1$ this would give $\left|V_{k}\right|>n$, a contradiction. So $k-1$ must be at least l.
Now recall that $E\left(V_{l}, V_{l+1}\right) \geq 2(k-1)\left|V_{l+1}\right|$. Counting from the other side, $l-1<l$ and $\delta(H) \geq$ $4(k-1) n^{1+\frac{1}{k}}$ still implies that $e\left(V_{l}, V_{l+1}\right)>4(k-1) n^{\frac{1}{k}}\left|V_{l}\right|-2(k-1)\left|V_{l}\right| \geq 2(k-1) n^{1+\frac{1}{k}}\left|V_{l}\right|$. So the average degree of $H\left[V_{l} \cup V_{l+1}\right]$ is at least $2(k-1)$ and consequently there exists a subgraph $H_{0} \subseteq H\left[V_{l} \cup V_{l+1}\right]$ with minimum degree $\delta\left(H_{0}\right)>k-1$.
We will build a cycle of length at least $2 k$ in H_{0}. To do so, let P be a longest path in H_{0}, and let w be an endpoint. By maximality of $P, N(w) \subseteq V(P)$. Since $|N(w)| \geq \delta\left(H_{0}\right) \geq k$, and the neighbours of w are not adjacent on P, the distance of w to its farthest neighbour on P is at least $2 k-1$. Adding this edge to the path closes a cycle of length at least $2 k$. This cycle then also has a chord, since $|N(w)| \geq \delta\left(H_{0}\right) \geq 3$. Call this cycle with a chord K.
We need the following lemma:
Lemma 13. Let K consists of a cycle of length m and a chord, and let $c: V(K) \rightarrow\{R, B\}$ be an improper colouring of its vertices. Then for every $l<m$, there is a path of length l in K whose endpoints have different colours.

Proof. Homework.
Consider now a minimal subtree $T^{\prime} \subseteq H\left[V_{0} \cup V_{1} \cup \ldots \cup V_{l}\right]$ that contains the vertex set $V(K) \cap V_{l}$. Let q be the height of T, where $1 \leq q \leq l$. Note that since $\delta(H) \geq 3$, the root of this tree has degree at least two.
Choose a branch of the root and colour all its descendants in $V(K) \cap V_{l}$ red and all others blue. This gives rise to an improper colouring of K and so, by the above lemma, there is an $R-B$ path of length $2(k-q)$. The red vertices are all in V_{l} and hence this path must start in V_{l}. Since its length is even, it will also end in V_{l}. Now append the two q-paths from the endpoints to the root of T^{\prime}. Due to the minimality of T^{\prime} these paths are disjoint and hence we obtained a cycle of length $2(k-q)+q+q=2 k$, finishing the proof.

Remark 14. The proof in fact gives cycles of many different even length: just consider all $R-B$ paths of different length.

