
Moore bound for irregular graphs

Recall that we want to prove the following theorem:

Theorem 1. Let G be an n-vertex graph with δ(g) ≥ 2, and with girth g(G) ≥ 2k + 1 and average
degree d̄ = 2m

n . Then

n ≥ 1 + d̄
k−1∑
i=0

(d̄− 1)i.

We saw last time that this implies:

Corollary 2. ex(n, {C3, C4, ..., C2k}) ≤ 1
2

(
n1+ 1

k + n
)

Let us now describe the idea of the proof:

Take a random walk, starting at a random vertex:

a) Choose an initial vertex v0 at random. To avoid getting stuck in sparse parts of G, choose
v0 according to the degree of the vertices, i.e.

P(v0 = v) =
d(v)∑
u d(u)

=: π(v);

b) Choose an edge −→e1 uniformly at random from edges at v0 and get a new vertex v1;

c) Choose a different edge −→e2 from v1 uniformly at random from among all edges at v1, except
for −→e1 and get a new vertex v2;

d) Repeat until we get a walk of the desired length.

Claim 3. If v0 is distributed as π, then for any j ≥ 1, vj is also distributed as π and −→ej is uniformly

distributed over
−→
E .

Proof. We prove the distribution of ej by induction on j:

j = 1: Fix (u, v) ∈
−→
E . We have to show that P(−→e1 = (u, v)) = 1

nd̄
. We have

P(−→e1 = (u, v)) = P(v0 = u ∧ −→e1 = (u, v)) = P(v0 = u)P(−→e1 = (u, v)|v0 = u) =
d(u)

nd̄

1

d(u)
=

1

nd̄
.

j → j + 1: We have to show that P(−−→ej+1 = (u, v)) = 1
nd̄

.

P(−−→ej+1 = (u, v)) =
∑
−→e

P(−−→ej+1 = (u, v)|−→ej = −→e )P(−→ej = −→e )
I.H.
=

1

nd̄

∑
−→e

P(−−→ej+1 = (u, v)|−→ej = −→e )

=
1

nd̄

∑
x∈N(u)\{v}

P(−−→ej+1 = (u, v)|−→ej = (x, u)) =
1

nd̄
(d(u)− 1)

1

d(u)− 1

=
1

nd̄
.

The distribution of vj follows from that of ej : P(vj = v) =
∑

u∈N(v)

P(−→ej = (u, v)) = d(v)

nd̄
.

Lemma 4. For an arbitrary graph G with minimum degree at least 2, we have

Ev∼π[ni(v)] ≥ d̄(d̄− 1)i−1
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Observe how the previous lemma implies the theorem. In an n-vertex graph with girth at least

2k + 1, n ≥
k∑
i=0

ni(v) for any vertex v. Now if we choose v randomly according to π and use linearity

of expectation, we can conclude that there exists a vertex v0 with

k∑
i=0

ni(v0) ≥
k∑
i=0

E [ni(v)] ≥ 1 + d̄

k−1∑
i=0

(d̄− 1)i.

In order to prove the Lemma, we will introduce the concept of Entropy and see some basic prop-
erties.

Entropy

Definition 5. Let X be a discrete random variable, and let p be the probability distribution
function, i.e. p(x) = P(X = x). Then the entropy of X is

H(X) = Ex[− log2(p(x))] = −
∑
x

p(x) log2 p(x)

Remark 6. 1. For z = 0, we set z log2 z := limx→0 x log2 x = 0.

2. The entropy depends only on the distribution of the random variable, not on its values.

3. The entropy can be thought of as a measure of uncertainty of the random variable.

4. All logarithms considered in this section are assumed to be base 2.

Examples.

a) If X ∼ Bernoulli(p), then H(X) = −p log p− (1− p) log(1− p).
This is the so called binary entropy function.

b) If X is the uniform distribution on an n-element set, then H(X) = −
n∑
i=1

1
n log 1

n = log n.

We have the following upper bound on the entropy of a random variable.

Propositions 7. If X is a random variable taking on n values, then H(X) ≤ log n.

Definition 8. Given two random variables X,Y , the joint entropy of X and Y is

H(X,Y ) = Ex,y[− log(p(x, y))]

and the conditional entropy of X given Y is

H(X|Y ) := Ey[H(X|{Y = y})] = Ey[−
∑
x

P(X = x|Y = y) logP(X = x|Y = y)].

The link between the joint entropy and the conditional entropy is given by the following proposition.

Propositions 9. If X,Y are two random variables, then

H(X,Y ) = H(Y ) +H(X|Y ).

Proof. Homework.

We are now ready to proof the Lemma 4
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Proof. (of Lemma 4) Note that ni(v) is the size of the range of the random variable (−→e 1,
−→e 2, . . . ,

−→e i|v0 =
v), for every vertex v ∈ V (G). Hence by the concavity of the log-function and Proposition 7, we have

log(Ev∼π[ni(v)]) ≥ Ev∼π[log ni(v)] ≥ Ev∼π [H(−→e1
−→e2 . . .

−→ei |v0 = v)] .

By Proposition 9 and linearity of expectation, this is further equal to

Ev∼π[H(−→e1 |v0 = v)] +
i∑

j=2

Ev∼π[H(−→ej |−−→ej−1, ...,
−→e0 , v0 = v)]

The edge e1 is chosen uniformly out of d(v) edges, hence by Example (b) we have

= Ev∼π(log d(v)) +
i∑

j=2

Ev∼π[H(−→ej |−−→ej−1, vj−1]

= Ev∼π(log d(v)) +
i∑

j=2

Evj−1∼π[log(d(vj−1)− 1)]

= Ev∼π[log(d(v)(d(v)− 1)i−1)]

by definition of π
=

1

nd̄

∑
v

d(v) log(d(v)(d(v)− 1)i−1)

x7→x log x(x−1)i−1is convex on x≥2

≥ 1

nd̄
nd̄ log(d̄(d̄− 1)i−1)

= log(d̄(d̄− 1)i−1).

Hence Ex∼π[ni(v)] ≥ d̄(d̄− 1)i−1 as the logarithm function is increasing.

Upper bound on the Turán number of C2k

Instead of forbidding every cycle of length up to 2k, we now only disallow C2k. We will prove that the
Θ(n1+ 1

k ) can be saved.

Theorem 10. Let k ≥ 2. Then ex(n,C2k) ≤ 8(k − 1)n1+ 1
k .

Remark 11. An upper bound of the order n1+ 1
k was first proved by Bondy and Simonovits. The Proof

we give here is based on Verstraete’s and gives a better constant factor. Later Pikhurko removed the
8 factor and replaced it with (1 + o(1)) and recently Bukh and... gave a constant factor sublinear in
k. However, it is still not known, whether one could remove the k−dependence of the constant factor.

Proof. We may assume k ≥ 3 (for k = 2, that is for ex(n,C4), we already have proved an upper bound
with a better constant factor).

Given a graph G with 8(k− 1)n1+ 1
k edges, we can pass to a bipartite subgraph H ⊆ G with minimum

degree greater than 4(k − 1)n
1
k .

Pick an arbitrary vertex v0 ∈ V , and define

Vi := {v ∈ V : dH(v0, v) = i}

Note that Vi is an independet set (H is bipartite) and the neighbourhood of Vi is N(Vi) = Vi−1∪Vi+1.
Let

l = min{i : e(Vi, Vi+1) ≥ 2(k − 1)|Vi+1|},
the smallest index such that the vertex set of Vl+1 has a “large” average degree “backwards”. In-
tuitively, if the vertices of some Vi have a small average degree “backwards”, then they must have
many edges “forward”, towards Vi+1. Now if even i+ 1 ≤ l, then Vi+1 still send only a small number
of edges “backwards”. These two things: Vi sending many edges towards Vi+1 and Vi+1 sending few
edges back towards Vi are only possible if the vertex sets “expand”, that is, if Vi+1 is much larger than
Vi. This cannot happen many times, since the size is eventually bounded by the number of vertices
n. We formalise this in the next Claim.
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Claim 12. l ≤ k − 1.

Proof. For i < l on the one hand we have e(Vi, Vi+1) < 2(k − 1)|Vi+1|. On the other hand, since

e(Vi−1, Vi) < 2(k − 1)|Vi|, using δ(H) > 4(k − 1)n
1
k we also have that e(Vi, Vi+1) > 4(k − 1)n

1
k |Vi| −

2(k−1)|Vi| ≥ 2(k−1)n
1
k |Vi|. These two estimates imply that for every i < l, we have 2(k−1)|Vi+1| >

e(Vi, Vi+1) > 2(k − 1)n
1
k |Vi| and hence

|Vi+1| > n
1
k |Vi| > n

2
k |Vi−1| > ... > n

i+1
k |V0| = n

i+1
k .

For i = k − 1 this would give |Vk| > n, a contradiction. So k − 1 must be at least l.

Now recall that E(Vl, Vl+1) ≥ 2(k − 1)|Vl+1|. Counting from the other side, l − 1 < l and δ(H) ≥
4(k − 1)n1+ 1

k still implies that e(Vl, Vl+1) > 4(k − 1)n
1
k |Vl| − 2(k − 1)|Vl| ≥ 2(k − 1)n1+ 1

k |Vl|. So
the average degree of H[Vl ∪ Vl+1] is at least 2(k − 1) and consequently there exists a subgraph
H0 ⊆ H[Vl ∪ Vl+1] with minimum degree δ(H0) > k − 1.
We will build a cycle of length at least 2k in H0. To do so, let P be a longest path in H0, and let w
be an endpoint. By maximality of P , N(w) ⊆ V (P ). Since |N(w)| ≥ δ(H0) ≥ k, and the neighbours
of w are not adjacent on P , the distance of w to its farthest neighbour on P is at least 2k− 1. Adding
this edge to the path closes a cycle of length at least 2k. This cycle then also has a chord, since
|N(w)| ≥ δ(H0) ≥ 3. Call this cycle with a chord K.
We need the following lemma:

Lemma 13. Let K consists of a cycle of length m and a chord, and let c : V (K) → {R,B} be an
improper colouring of its vertices. Then for every l < m, there is a path of length l in K whose
endpoints have different colours.

Proof. Homework.

Consider now a minimal subtree T ′ ⊆ H[V0 ∪ V1 ∪ . . .∪ Vl] that contains the vertex set V (K)∩ Vl.
Let q be the height of T , where 1 ≤ q ≤ l. Note that since δ(H) ≥ 3, the root of this tree has degree
at least two.
Choose a branch of the root and colour all its descendants in V (K)∩Vl red and all others blue. This
gives rise to an improper colouring of K and so, by the above lemma, there is an R−B path of length
2(k − q). The red vertices are all in Vl and hence this path must start in Vl. Since its length is even,
it will also end in Vl. Now append the two q-paths from the endpoints to the root of T ′. Due to the
minimality of T ′ these paths are disjoint and hence we obtained a cycle of length 2(k−q)+q+q = 2k,
finishing the proof.

Remark 14. The proof in fact gives cycles of many different even length: just consider all R−B paths
of different length.
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