Exercise Sheet 5

Due date: June 15th 5:00 PM, tutor box of Shagnik Das Late submissions will be presumed dead.

You should try to solve and write clear solutions to as many of the exercises as you can.
Exercise 1 Recall in Benson's construction we used the quadratic surface Q_{4} in the projective space $P G(q, 4)$ over the finite field \mathbb{F}_{q}, defined as $Q_{4}=\left\{x: x_{0}^{2}+x_{1} x_{-1}+x_{2} x_{-2}=0\right\}$. Prove the following properties of Q_{4}.
(i) $\left|Q_{4}\right|=q^{3}+q^{2}+q+1$.
(ii) Q_{4} contains $q^{3}+q^{2}+q+1$ lines.
(iii) Every point is contained in $q+1$ lines of Q_{4}.

Exercise 2 Using the trick of Lazebnik, Ustimenko and Woldar, construct a C_{6}-free graph with $\frac{2}{3^{4 / 3}} n^{4 / 3} \approx 0.462 n^{4 / 3}$ edges (asymptotically).

Exercise 3 Define a geometry with points $\mathcal{P}_{*}=\left\{(a, b, c): a, b, c \in \mathbb{F}_{q}\right\}$, lines $\mathcal{L}_{*}=$ $\left\{[d, e, f]: d, e, f \in \mathbb{F}_{q}\right\}$, and incidences $((a, b, c),[d, e, f]) \in I_{*}$ if and only if $e-b=d a$ and $f-c=e a$. Prove that the incidence graph of this geometry is precisely Wenger's C_{6}-free construction.

Exercise 4 Let $q=2^{2 \alpha+1}$, and define π_{*} by

$$
\begin{aligned}
& \pi_{*}:(a, b, c) \mapsto\left[a^{2^{\alpha+1}},(a b)^{2^{\alpha}}+c^{2^{\alpha}}, b^{2^{\alpha+1}}\right], \\
& \pi_{*}:[d, e, f] \mapsto\left(d^{2^{\alpha}}, f^{2^{\alpha}},(d f)^{2^{\alpha}}+e^{2^{\alpha+1}}\right) .
\end{aligned}
$$

Show that π_{*} is a polarity for the geometry defined in Exercise 3, and prove that the set of absolute points is

$$
N_{\pi_{*}}:=\left\{\left(a, b, a^{2^{\alpha+1}+2}+a b+b^{2^{\alpha+1}}\right): a, b \in \mathbb{F}_{q}\right\} .
$$

Finally, prove that the polarity graph $\Gamma^{\pi_{*}}$ is C_{6}-free and hence $\operatorname{ex}\left(n, C_{6}\right) \geq \frac{1}{2} n^{4 / 3}-\frac{1}{2} n^{2 / 3}$.

Exercise 5 Complete the doubling-trick proof of Füredi, Naor and Verstraëte to show $e x\left(n, C_{6}\right) \geq 0.534 n^{4 / 3}$ (approximately). Recall that the graph H was formed by taking a subset A of the vertices of the polarity graph $\Gamma^{\pi_{*}}$ above, introducing twins of these vertices. Calculate the expected number of edges of H if A is chosen at random, with each vertex of $\Gamma^{\pi_{*}}$ chosen independently with an appropriate probability p. Use this to deduce the claimed bound on $e x\left(n, C_{6}\right)$.

