So 2015

Exercise Sheet 5

Due date: June 15th 5:00 PM, tutor box of Shagnik Das Late submissions will be presumed dead.

You should try to solve and write clear solutions to as many of the exercises as you can.

Exercise 1 Recall in Benson's construction we used the quadratic surface Q_4 in the projective space PG(q, 4) over the finite field \mathbb{F}_q , defined as $Q_4 = \{x : x_0^2 + x_1x_{-1} + x_2x_{-2} = 0\}$. Prove the following properties of Q_4 .

- (i) $|Q_4| = q^3 + q^2 + q + 1.$
- (ii) Q_4 contains $q^3 + q^2 + q + 1$ lines.
- (iii) Every point is contained in q + 1 lines of Q_4 .

Exercise 2 Using the trick of Lazebnik, Ustimenko and Woldar, construct a C_6 -free graph with $\frac{2}{2^{4/3}}n^{4/3} \approx 0.462n^{4/3}$ edges (asymptotically).

Exercise 3 Define a geometry with points $\mathcal{P}_* = \{(a, b, c) : a, b, c \in \mathbb{F}_q\}$, lines $\mathcal{L}_* = \{[d, e, f] : d, e, f \in \mathbb{F}_q\}$, and incidences $((a, b, c), [d, e, f]) \in I_*$ if and only if e - b = da and f - c = ea. Prove that the incidence graph of this geometry is precisely Wenger's C_6 -free construction.

Exercise 4 Let $q = 2^{2\alpha+1}$, and define π_* by

$$\pi_* : (a, b, c) \mapsto \left[a^{2^{\alpha+1}}, (ab)^{2^{\alpha}} + c^{2^{\alpha}}, b^{2^{\alpha+1}} \right],$$

$$\pi_* : [d, e, f] \mapsto \left(d^{2^{\alpha}}, f^{2^{\alpha}}, (df)^{2^{\alpha}} + e^{2^{\alpha+1}} \right).$$

Show that π_* is a polarity for the geometry defined in Exercise 3, and prove that the set of absolute points is

$$N_{\pi_*} := \left\{ \left(a, b, a^{2^{\alpha+1}+2} + ab + b^{2^{\alpha+1}} \right) : a, b \in \mathbb{F}_q \right\}.$$

Finally, prove that the polarity graph Γ^{π_*} is C_6 -free and hence $ex(n, C_6) \geq \frac{1}{2}n^{4/3} - \frac{1}{2}n^{2/3}$.

Exercise 5 Complete the doubling-trick proof of Füredi, Naor and Verstraëte to show $ex(n, C_6) \geq 0.534n^{4/3}$ (approximately). Recall that the graph H was formed by taking a subset A of the vertices of the polarity graph Γ^{π_*} above, introducing twins of these vertices. Calculate the expected number of edges of H if A is chosen at random, with each vertex of Γ^{π_*} chosen independently with an appropriate probability p. Use this to deduce the claimed bound on $ex(n, C_6)$.