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Late submissions may get lost in some airport.

You should try to solve and write clear solutions to as many of the exercises as you can.

Exercise 1 The construction of Codenotti–Pudlak–Resta we saw gave a constructive lower
bound of R(3, k) of order k4/3. In this exercise, we seek to improve this bound by making
the following changes to the construction G:

- Instead of starting with the girth-8 Benson graph, take the underlying graph B to be
the point/line incidence graph of the projective plane.

- As before, the edges of the underlying graph will be the vertices of our construction;
that is, V (G) = E(B).

- Fix an arbitrary ordering ≺ on the set P of points of the projective planes.

- Put an edge between vertices p1`1 and p2`2 of G if p1 ≺ p2, `1 6= `2, and p1`2 ∈ E(B).

Show that this graph gives a constructive lower bound of order k3/2 for R(3, k).

Exercise 2 Recall that an s-uniform sunflower with r petals is a collection of sets F1, F2, . . . , Fr,
each of size s, such that Fi ∩ Fj = ∩r`=1F` for every 1 ≤ i < j ≤ r.

(i) Show that any family F of more than s!(r − 1)s sets, each of size s, must contain a
sunflower with r petals.

(ii) Build an s-uniform family with at least 2s sets not containing a sunflower with 3 petals.

[Hint (to be read backwards): nI trap (i), esu noitcudni no eht ytimrofinu s fo eht ylimaf.
rebmemeR taht eht nommoc noitcesretni nac eb ytpme!]

Exercise 3 Show that the projective norm-graphs provide a constructive lower bound of
Ω
(
k4/3

)
for R(C4, Kk).1

1The best-known lower bound, obtained by the Local Lemma, is of order (k/ log k)3/2.
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Exercise 4 The following two exercises concern multicoloured Ramsey numbers.

(i) Provide a (reasonable2) definition of the multicoloured Ramsey number

Rr(3) := R(3, 3, . . . , 3︸ ︷︷ ︸
r

).

(ii) Show that Rr(3) is finite by proving Rr(3) ≤ (Rr−1(3)− 1) r + 2.

(iii) Deduce the upper bound Rr(3) ≤ be · r!c+ 1.

Exercise 5 Prove that for every k ≥ 1, R(3, 3, . . . , 3︸ ︷︷ ︸
k

,m) ≤ Ckm
k+1, where Ck is a constant

independent of m.

2Your definition should agree with R(3, 3) when r = 2, and allow for non-trivial theorems.
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